> Survreg treats weights as case weights, and lm treats them as sampling > weights. > Here is a simple example. Data set test2 has two copies of every obs in data > set test. > > > test <- data.frame(x=1:6, y=c(1,3,2,4,6,5)) > > test2 <- test[c(1:6, 1:6),] > > > summary(lm( y ~ x, data=test))$coef > Estimate Std. Error t value Pr(>|t|) > (Intercept) 0.4000000 0.9039595 0.4424977 0.68100354 > x 0.8857143 0.2321154 3.8158362 0.01884548 > > > summary(lm( y~x, data=test2))$coef > Estimate Std. Error t value Pr(>|t|) > (Intercept) 0.4000000 0.5717142 0.6996503 0.500096805 > x 0.8857143 0.1468027 6.0333668 0.000126369 > > As expected, the standard error has decreased by a factor of sqrt(2) > Now fit the model using case weights: > > > summary(lm( y~x, data=test, weight= rep(2,6)))$coef > Estimate Std. Error t value Pr(>|t|) > (Intercept) 0.4000000 0.9039595 0.4424977 0.68100354 > > Notice that the answer matches the first run with data set test. Repeat > this experiment > with survreg, and you will find that the weighted run matches data test2. > When using the > robust variance, survreg treats weights as sampling weights, not case weights.
When I use robust=F, I now understand the results: > summary(survreg(Surv(y)~x, dist='gaussian', data=test, > weights=rep(2,6)))$table Value Std. Error z p (Intercept) 0.4000000 0.5219013 0.7664285 4.434214e-01 x 0.8857143 0.1340119 6.6092222 3.863445e-11 Log(scale) -0.2321528 0.2041241 -1.1373118 2.554080e-01 When I use robust=T, I do not understand how survreg treats the weights as sampling weights and arrives at a different standard error from lm: > summary(survreg(Surv(y)~x, dist='gaussian', data=test, weights=rep(2,6), > robust=T))$table Value Std. Err (Naive SE) z p (Intercept) 0.4000000 0.29426260 0.5219013 1.35933 1.740420e-01 x 0.8857143 0.08384353 0.1340119 10.56390 4.380958e-26 Log(scale) -0.2321528 0.08117684 0.2041241 -2.85984 4.238543e-03 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.