Hello again,

turns out that I was able to nail down the problem to this :

Prior to the profiling, I have several packages and a lot of functions to
load, including the C code for the rankCR function in R.

If I load first the libraries and next the C functions

library(Hmisc)
library(copula)
library(igraph)
library(ape)
library(phytools)
library(pcaPP)
if(OS=="Darwin") {
dyn.load("NAC_package/JKendall.so")
dyn.load("NAC_package/Npsi.so")
dyn.load("NAC_package/rankC.so")
} else {
dyn.load("NAC_package/JKendall.dll")
dyn.load("NAC_package/Npsi.dll")
dyn.load("NAC_package/rankC.dll")
}


No problem occurs at all.

But if load the libraries after the C functions prior to the profiling,
like this


if(OS=="Darwin") {
dyn.load("NAC_package/JKendall.so")
dyn.load("NAC_package/Npsi.so")
dyn.load("NAC_package/rankC.so")
} else {
dyn.load("NAC_package/JKendall.dll")
dyn.load("NAC_package/Npsi.dll")
dyn.load("NAC_package/rankC.dll")
}
library(Hmisc)
library(copula)
library(igraph)
library(ape)
library(phytools)
library(pcaPP)

the problem with rankC occurs.

If I try to reload in the same R session the C functions and the
librairies, the problem disappears permanently. The reason is that the C
functions are reloaded once more, but the already loaded libraries are not
and thus the last thing loaded is the C functions, exactly as in the
previous described case.



Any thoughts why I should load the libraries first? I already tried to
recompile the C functions with different names to be sure there are not
somehow erased by the C functions in the libraries, but it didn't help.


On Thu, Jan 30, 2014 at 8:46 AM, Nathan Uyttendaele <na.uyt...@gmail.com>wrote:

> Hello Jim, thanks for the reply!
>
> What I'm trying to do:
>
> I have a small function that makes use of many other functions, such as
> the one I called "estimate.NAC.structure.of()"
> I'm trying to make run everything faster. Thus I'm using Rprof to perform
> a line by line profiling to help me decide what lines of code I should
> replace. Mostly it's this estimate.NACstructure.of function that requires
> time. I could copy paste this function, but it has more than a 1000 lines
> of code...
>
> The line #33 and what's around is
>
> rankCR=function(a, b, c) {
> vvv=c(-1, -1, -1)
> dens=.C("rankC", as.integer(sample.size), as.double(vvv), as.double(a), 
> as.double(b),as.double(c),
> result=as.double(rep(-1, sample.size*3)), ties=as.double(rep(-1,
> sample.size*3))) ################ line 33
>  return(list(matrix(dens[["result"]], ncol=3, nrow=sample.size,
> byrow=TRUE), as.numeric(dens[["ties"]])))
> }
>
> This rankCR function is then used in a loop:
>
> pre.r <- rankCR(pseudo.samples[[a]], pseudo.samples[[b]],
> pseudo.samples[[c]])
>
> where pseudo.samples[[whatever]] is just a vector.
>
>
> And so the problem is that this rankCR function eats up more than 50% of
> the execution time according to the first profiling (more precisely, line
> 33 is eating up more than 50% of the execution time), then does not even
> show up in the top 30 in the second profiling... thus what I have to
> improve to make the code run faster is getting not that clear.
>
>
>
> On Wed, Jan 29, 2014 at 10:02 PM, jim holtman <jholt...@gmail.com> wrote:
>
>> You should at least post the script so that we see what line 33 is.
>> For example, was it an input statement so that on the second time you
>> ran the data was cached in memory?  Did you remove all the objects and
>> do a gc() to clean up memory before trying again (maybe there was some
>> data hanging around that helped out).  It is not unknown to get
>> different results if you are having to access, especially, external
>> data.
>>
>> Jim Holtman
>> Data Munger Guru
>>
>> What is the problem that you are trying to solve?
>> Tell me what you want to do, not how you want to do it.
>>
>>
>> On Wed, Jan 29, 2014 at 8:29 AM, Nathan Uyttendaele <na.uyt...@gmail.com>
>> wrote:
>> > Hello,
>> >
>> > when I run this code in a brand new R session
>> >
>> > --------------------------------------------------
>> > ### loading of libraries and other functions
>> >
>> > Rprof("profiling.out")
>> > start.time=proc.time()[3]
>> > for(i in 1:50) {
>> > main.function()
>> > }
>> > end.time=proc.time()[3]
>> > Rprof()
>> > ---------------------------------------------------
>> >
>> > I get as result of the profiling
>> >
>> > estimateNACstructureof.R#33    56.6900000
>> >
>> > estimateNACstructureof.R#93     5.2200000
>> >
>> > estimateNACstructureof.R#87     4.9700000
>> >
>> > estimateNACstructureof.R#78     1.9400000
>> >
>> > oldFriedman.R#39                1.2600000
>> >
>> > estimateNACstructureof.R#81     1.2100000
>> >
>> > estimateNACstructureof.R#88     1.2000000
>> >
>> > estimateNACstructureof.R#657    0.9600000
>> >
>> > todecompose.R#34                0.6900000
>> >
>> > estimateNACstructureof.R#658    0.6600000
>> >
>> > estimateNACstructureof.R#264    0.6500000
>> >
>> > estimateNACstructureof.R#923    0.5900000
>> >
>> > aresameNACstructures.R#4        0.5600000
>> >
>> > estimateNACstructureof.R#1059   0.4800000
>> >
>> > estimateNACstructureof.R#1064   0.4700000
>> >
>> > estimateNACstructureof.R#22     0.4600000
>> >
>> > estimateNACstructureof.R#659    0.4500000
>> >
>> > nicenodenames.R#22              0.4400000
>> >
>> > estimateNACstructureof.R#1029   0.4200000
>> >
>> > todecompose.R#119               0.4200000
>> >
>> > estimateNACstructureof.R#1061   0.4000000
>> >
>> > estimateNACstructureof.R#654    0.3800000
>> >
>> > todecompose.R#12                0.3800000
>> >
>> > estimateNACstructureof.R#85     0.3700000
>> >
>> > estimateNACstructureof.R#89     0.3700000
>> >
>> > todecompose.R#19                0.3500000
>> >
>> > todecompose.R#160               0.3500000
>> >
>> > estimateNACstructureof.R#1060   0.3300000
>> >
>> > estimateNACstructureof.R#83     0.3100000
>> >
>> > todecompose.R#144               0.3100000
>> >
>> > sampling.time 207.1400000
>> >
>> > total.elapsed.time  235.9440000
>> >
>> > total.elapsed.time/samping.time*100    87.79202
>> >
>> >
>> > Except for the 3 last rows, what we have is the self.pct value in
>> > decreasing order, by line.
>> >
>> >
>> > What I do not understand is that if am to run the same code all over
>> again,
>> > I now get
>> >
>> >
>> > estimateNACstructureof.R#852       4.34000
>> >
>> > estimateNACstructureof.R#923       3.94000
>> >
>> > estimateNACstructureof.R#87        3.38000
>> >
>> > estimateNACstructureof.R#93        3.31000
>> >
>> > estimateNACstructureof.R#859       2.70000
>> >
>> > estimateNACstructureof.R#1029      2.27000
>> >
>> > estimateNACstructureof.R#657       1.65000
>> >
>> > estimateNACstructureof.R#933       1.51000
>> >
>> > estimateNACstructureof.R#78        1.49000
>> >
>> > estimateNACstructureof.R#721       1.49000
>> >
>> > todecompose.R#34                   1.49000
>> >
>> > estimateNACstructureof.R#658       1.39000
>> >
>> > estimateNACstructureof.R#1064      1.26000
>> >
>> > estimateNACstructureof.R#1059      1.25000
>> >
>> > estimateNACstructureof.R#659       1.21000
>> >
>> > estimateNACstructureof.R#1061      1.20000
>> >
>> > aresameNACstructures.R#4           1.17000
>> >
>> > estimateNACstructureof.R#1060      1.09000
>> >
>> > todecompose.R#12                   1.00000
>> >
>> > todecompose.R#145                  0.98000
>> >
>> > estimateNACstructureof.R#723       0.97000
>> >
>> > getNACadjacencyof.R#10             0.97000
>> >
>> > estimateNACstructureof.R#709       0.96000
>> >
>> > oldFriedman.R#39                   0.90000
>> >
>> > estimateNACstructureof.R#81        0.89000
>> >
>> > estimateNACstructureof.R#88        0.88000
>> >
>> > estimateNACstructureof.R#708       0.88000
>> >
>> > todecompose.R#119                  0.86000
>> >
>> > todecompose.R#160                  0.84000
>> >
>> > estimateNACstructureof.R#715       0.83000
>> >
>> > sampling.time                    198.38000
>> >
>> > total.elapsed.time                   203.56800
>> >
>> > total.elapsed.time /samping.time*100  97.45147
>> >
>> >
>> >
>> > And the line 33 of estimateNACstructureof, which previously was observed
>> > 56.69% of the sampling time is now... gone ! If I profile he code in the
>> > same R session again and again, line 33 of estimateNACstructureof seems
>> > never to appear again.
>> >
>> >
>> > In fact the line 33 of estimateNACstructureof appears only when Rprof is
>> > run for the first time in the R session.
>> >
>> >
>> > Note: this is maybe relevant, the line 33 of estimateNACstructureof
>> refers
>> > to C function.
>> >
>> >
>> > Any thoughts of what I get this peculiar result?
>> >
>> >         [[alternative HTML version deleted]]
>> >
>> > ______________________________________________
>> > R-help@r-project.org mailing list
>> > https://stat.ethz.ch/mailman/listinfo/r-help
>> > PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> > and provide commented, minimal, self-contained, reproducible code.
>>
>
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to