Hej all, actually i try to tune a SVM in R and use the package "e1071" wich works pretty well. I do some gridsearch in the parameters and get the best possible parameters for classification. Here is my sample code
type<-sample(c(-1,1) , 20, replace = TRUE ) weight<-sample(c(20:50),20, replace=TRUE) height<-sample(c(100:200),20, replace=TRUE) width<-sample(c(30:50),20,replace=TRUE) volume<-sample(c(1000:5000),20,replace=TRUE) data<-cbind(type,weight,height,width,volume) train<-as.data.frame(data) library("e1071") features <- c("weight","height","width","volume") (formula<-as.formula(paste("type ~ ", paste(features, collapse= "+")))) svmtune=tune.svm(formula, data=train, kernel="radial", cost=2^(-2:5), gamma=2^(-2:1),cross=10) summary(svmtune) My question is if there is a way to tune the features. So in other words - what i wanna do is to try all possible combinations of features : for example use only (volume) or use (weight, height) or use (height,volume,width) and so on for the SVM and to get the best combination back. Best wishes Uwe ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.