Hi, Try either: res1 <- apply(mydata[,1:2],2,mean) res2 <- colMeans(mydata[,1:2]) identical(res1,res2) #[1] TRUE
# Also if you need to find means for each group ("Ungrazed vs. "Grazed") by(mydata[,-3],mydata[,3],colMeans) #or if column names are "V1", "V2", "V3" aggregate(.~V3,mydata,mean) #or library(plyr) ddply(mydata,.(V3),numcolwise(mean)) A.K. I have a data set with two columns of data that I want to find the mean of. 1 6.225 59.77 Ungrazed 2 6.487 60.98 Ungrazed 3 4.919 14.73 Ungrazed 4 5.130 19.28 Ungrazed 5 5.417 34.25 Ungrazed 6 5.359 35.53 Ungrazed 7 7.614 87.73 Ungrazed 8 6.352 63.21 Ungrazed 9 4.975 24.25 Ungrazed 10 6.930 64.34 Ungrazed 11 6.248 52.92 Ungrazed 12 5.451 32.35 Ungrazed 13 6.013 53.61 Ungrazed 14 5.928 54.86 Ungrazed 15 6.264 64.81 Ungrazed 16 7.181 73.24 Ungrazed 17 7.001 80.64 Ungrazed 18 4.426 18.89 Ungrazed 19 7.302 75.49 Ungrazed 20 5.836 46.73 Ungrazed 21 10.253 116.05 Ungrazed 22 6.958 38.94 Grazed 23 8.001 60.77 Grazed 24 9.039 84.37 Grazed 25 8.910 70.11 Grazed 26 6.106 14.95 Grazed 27 7.691 70.70 Grazed 28 8.988 80.31 Grazed 29 8.975 82.35 Grazed 30 9.844 105.07 Grazed 31 8.508 73.79 Grazed 32 7.354 50.08 Grazed 33 8.643 78.28 Grazed 34 7.916 41.48 Grazed 35 9.351 98.47 Grazed 36 7.066 40.15 Grazed 37 8.158 52.26 Grazed 38 7.382 46.64 Grazed 39 8.515 71.01 Grazed 40 8.530 83.03 Grazed This is from an introduction handout that instructs me to enter the command >mean(mydata[,1:2]) but when I enter it, I get an error message Warning message: In mean.default(mydata[, 1:2]) : argument is not numeric or logical: returning NA I've tried tacking on na.rm=T to the end of it, but I get the same message. Can someone tell me what I'm doing wrong, or how to fix it? I've tried searching the forum, but can't find a post relevant to this problem. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.