Dear all I have data related to cell count across time in 2 different types of cells. I have transformed the count data using a log and I want to test the H0: B cell_ttype1=Bcell_type2 across time
for that I am fitting the following model fit_all<-lm(data$count~data$cell_type+data$time+data$cell_type*data$time) the output is Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.0450021 0.0286824 36.434 <2e-16 *** data$cell_typeOV -0.0456669 0.0405631 -1.126 0.271 data$time 0.0115620 0.0004815 24.015 <2e-16 *** data$cell_typeOV:data$time -0.0009764 0.0006809 -1.434 0.164 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.06318 on 26 degrees of freedom Multiple R-squared: 0.9764, Adjusted R-squared: 0.9737 F-statistic: 358.8 on 3 and 26 DF, p-value: < 2.2e-16 inspite the fact that the p-value of he interaction is >0.05 may I still conclude that B cell_ttype1 is different from Bcell_type2 because the p-value of the fit is lower<0.05? Thanks in advance for your help. With kind regards, Andreia -- --------------------------------------------------------------------------------------------- Andreia J. Amaral, PhD BioFIG - Center for Biodiversity, Functional and Integrative Genomics Instituto de Medicina Molecular University of Lisbon Tel: +352 217500000 (ext. office: 28253) email:andreiaama...@fm.ul.pt ; andreiaama...@fc.ul.pt [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.