Consider the following two mode-data: edgelist: actor event 1 Sam a 2 Sam b 3 Sam c 4 Greg a 5 Tom b 6 Tom c 7 Tom d 8 Mary b 9 Mary d Two-Mode Adjacency Matrix: a b c d Sam 1 1 1 0 Greg 1 0 0 0 Tom 0 1 1 1 Mary 0 1 0 1 To transform two mode to one mode data, we need a function that transforms the data like so: Sam is connected to Greg (via event a) Sam is connected to Tom (via event b and c) Sam is connected to Mary (via event b) Tom is connected to Mary (via event b and d) OK, now I load my data by executing the following: ################################################################################### require(igraph) df <- data.frame(actor = c('Sam','Sam','Sam','Greg','Tom','Tom','Tom','Mary','Mary'), event =c('a','b','c','a','b','c','d','b','d') ) g = graph.data.frame(df, directed=F) #Coerce data to igraph object 'g'
#Loading Function two.to.one: ##two.to.one() transforms 2-mode data to 1-mode two.to.one <- function(g, keep) { neis <- neighborhood(g, order=2) neis <- lapply(seq(neis), function(x) neis[[x]][ neis[[x]] != x-1]) ## drop self-loops neis <- lapply(neis, function(x) x[ x %in% keep ]) ## keep only these neis <- lapply(seq(neis), function(x) t(cbind(x-1, neis[[x]]))) ## create edge lists neis[-keep-1] <- NULL ## these are not needed neis <- matrix(unlist(neis), byrow=TRUE, nc=2) ## a single edge list neis <- neis[ neis[,1] > neis[,2], ] ## count an edge once only mode(neis) <- "character" g2 <- graph.edgelist(neis, dir=FALSE) V(g2)$id <- V(g2)$name ## 'id' is used in Pajek g2 } #Actors are the first 4 verticies, set them to be kept: keep = V(g)[1:4] #Convert matrix with two.to.one: g2 = two.to.one(g, keep) g2 ################################################################################### This yields the following output: > g2 Vertices: 4 Edges: 2 Directed: FALSE Edges: [0] 3 -- 2 [1] 4 -- 1 But, this can't be right. Here there are only two edges where there should be four, and if I am inturpreting correctly, the output it is reporting that Tom is connected to Greg (he is not) and Sam is connected to Mary (which is true). When I load my function, which is designed to transform a two mode edgelist (e.g. two columns of data) into a one-mode adjacency matrix it seems to work: ################################################################################### #load my function df.to.nxn <- function( x, y ){ # x values will be the N x N values M <- matrix( nrow = length( unique( x ) ), ncol = length( unique( x ) ), dimnames = list( unique( x ), unique( x ) ) ) M[ 1:length( unique( x ) ), 1:length( unique( x ) ) ] <- 0 #initialize the values to 0 - this possibly could be removed for illustrative purposes for( i in 1:length( x ) ) { # iterate through rows of data index = which( y == y[i] ) M[ as.character( x[ index ] ), as.character( x[ index ] ) ] = 1 } M # return M, an N x N matrix } #Convert matrix g3 = df.to.nxn(df$actor, df$event) g4 = graph.adjacency(g3, mode = "undirected", diag = F) V(g4)$name = row.names(g3) g4 ################################################################################### This yields: > g4 Vertices: 4 Edges: 4 Directed: FALSE Edges: [0] Sam -- Greg [1] Sam -- Tom [2] Sam -- Mary [3] Tom -- Mary Which is what we wanted. I have not figured out how to weight edges yet (the Sam and Tom edge and the Tom and Mary edge should perhaps be weighted at 2 because 'connected twice' -- connected by two events). -Solomon ________________________________ From: Gabor Csardi [mailto:[EMAIL PROTECTED] Sent: Wed 5/14/2008 4:01 AM To: Messing, Solomon O. Cc: R Help list Subject: Re: [R] For Social Network Analysis-Graph Analysis - How to convert 2 mode data to 1 mode data? Please stay on the list. On Tue, May 13, 2008 at 06:05:15PM -0400, Messing, Solomon O. wrote: > Gabor, > > By the way, this seems to work: I'm a bit lost. So now you're converting your data frame to a matrix? Why? Or you're doing the two-mode to one-mode conversion here? It does not seem so to me. Btw. there is a get.adjacency function in igraph to convert a graph to an adjacency matrix. G. > > df.to.nxn <- function( x, y ){ > # x values will be the N x N values > M <- matrix( nrow = length( unique( x ) ), ncol = length( unique( x > ) ), > dimnames = list( unique( x ), unique( x ) ) ) > M[ 1:length( unique( x ) ), 1:length( unique( x ) ) ] <- 0 > # initialize the values to 0 > for( i in 1:length( x ) ) { > # iterate through rows of data > index = which( y == y[i] ) > M[ as.character( x[ index ] ), as.character( x[ index ] > ) ] = 1 > } > M > # return M, an N x N matrix > } -- Csardi Gabor <[EMAIL PROTECTED]> UNIL DGM [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.