Hello, If you can, you probably should upgrade for R version 3.0.1.
Regards, Pascal 2013/8/27 Peter Maclean <pmaclean2...@yahoo.com> > I would like to store a big spatial weight matrix in R memory to do more > calculation. I know there are memory issue for 32 bit computer and I have > tried increasing the memory to maximum without success. I am using R > version 2.15.2 and window vista. The data has about 15,000 observations and > I would like to create and store a distance based Spatial Weight Matrix in > R memory. A reproducible codes are as follows and for both codes > produce out of memory error. The codes works to up 5000 observations. > > Based on these codes, (for those with experiece in big data)is it possible > to use ffbase or bigmemory packages to achieve the objective (keep the > matrix in memory)? I will appreciate any help. > > #Remove all objects > rm(list=ls()) > library(spdep) > library(maptools) > library(GeoXp) > library(ffbase) > library(bigmemory) > ########################################################################## > #Testing using fake data > n = 15000 > data = data.frame(n1=1:n) > data$SEQN <- seq(1, n,1) > data$LAT <- runif(n, 29.0000, 32.0000) > data$LON <- runif(n, -100.0000, -89.0000) > ######################################################################3 > #Create distance based spatial weight matrix using dist function > #using euclidean method > coords <- cbind(data$LON, data$LAT) > SWM <- as.matrix(dist(coords, method = "euclidean", upper=TRUE)) > > #Other data management > data1 <- cbind(data, SWM) > > > #Alternatively > #Create spatial weight matrix based on distance between Points > #using the spDistsN1 function and produce the same results as above > #Create coordinates > coordinates(data) <- ~LON+LAT > #Function to calculate the distance matrix > DistMatrix = function(obj, longlat = FALSE) { > return(sapply(1:length(obj[[1]]), function(x) > spDistsN1(coordinates(obj), coordinates(obj[x,]), longlat))) > } > SWMD <- big.matrix(DistMatrix(data)) > > data2 <- cbind(data, SWMD) > > With thanks > > Peter Maclean > Department of Economics > UDSM > [[alternative HTML version deleted]] > > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.