Greetings,

I am a newbie too. I will share what I do normally for speeding up the code.

1. Restrict defining too many variables (Global/ Local)
2. Use apply functions (apply,sapply,lapply,tapply, etc.) whenever feasible
3. Having multiple user defined functions doesn't help. Try to compact
everything in minimum number of functions
4. The in-memory of R is just 10% of your total RAM (Correct me if wrong).
Make sure most of it is used for processing and not storing

Hope this will help. Kindly suggest if I have misunderstood anything.

Thanks and Regards,

Heramb Gadgil


2013/8/19 Laz <lmra...@ufl.edu>

> Yes Bert, I am a beginner in writing R functions. I just don't know what
> to avoid or what to use in order to make the R functions faster.
>
> When I run the individual functions, they run quite well.
> However, calling all of them using the final function it becomes too slow.
>
> So I don't know how to make it faster.
> I used system.time()
>
> Regards,
> Laz
>
>
> On 8/19/2013 10:13 AM, Bert Gunter wrote:
>
>> ... and read the "R Language Definition" manual. I noticed unnecessary
>> constructs
>> (e.g., z <- f(something); return(z)) that suggest you have more basics
>> to learn to write efficient, well-structured R code.
>>
>> -- Bert
>>
>> On Mon, Aug 19, 2013 at 3:55 AM, Michael Dewey <i...@aghmed.fsnet.co.uk>
>> wrote:
>>
>>> At 10:28 19/08/2013, Laz wrote:
>>>
>>>> Dear R users,
>>>>
>>>> I have written a couple of R functions, some are through the help of
>>>> the R
>>>> group members. However, running them takes days instead of minutes or a
>>>> few
>>>> hours. I am wondering whether there is a quick way of doing that.
>>>>
>>>
>>> Your example code is rather long for humans to profile. Have you thought
>>> of
>>> getting R to tell where it is spending most time? The R extensions manual
>>> tells you how to do this.
>>>
>>>
>>>  Here are all my R functions. The last one calls almost all of the
>>>> previous
>>>> functions. It is the one I am interested in most. It gives me the
>>>> correct
>>>> output but it takes several days to run only 1000 or 2000 simulations!
>>>> e.g. system.time(test1<-finalF(**designs=5,swaps=20));test1
>>>> will take about 20 minutes to run but
>>>> system.time(test1<-finalF(**designs=5,swaps=50));test1 takes about 10
>>>> hours
>>>> and system.time(test1<-finalF(**designs=25,swaps=2000));test1 takes
>>>> about 3
>>>> days to run
>>>>
>>>> Here are my functions
>>>>
>>>>
>>>> ##############################**##############################**
>>>> #########
>>>>
>>>> ls() # list all existing objects
>>>> rm(list = ls()) # remove them all
>>>> rm(list = ls()[!grepl("global.var.A", ls())])
>>>> # refresh memory
>>>> gc()
>>>> ls()
>>>>
>>>> ### Define a function that requires useful input from the user
>>>> #b=4;g=seq(1,20,1);rb=5;cb=4;**s2e=1; r=10;c=8
>>>>
>>>> ##############################**#######
>>>> ##############################**######
>>>> # function to calculate heritability
>>>> herit<-function(varG,varR=1)
>>>> {
>>>>    h<-4*varG/(varG+varR)
>>>>    return(c(heritability=h))
>>>> }
>>>>
>>>> ##############################**#####
>>>> # function to calculate random error
>>>> varR<-function(varG,h2)
>>>> {
>>>>    varR<- varG*(4-h2)/h2
>>>>    return(c(random_error=varR))
>>>> }
>>>>
>>>> ##############################**############
>>>> # function to calculate treatment variance
>>>> varG<-function(varR=1,h2)
>>>> {
>>>>    varG<-varR*h2/(4-h2)
>>>>    return(c(treatment_variance=**varG))
>>>> }
>>>>
>>>>
>>>> ##############################**#
>>>>
>>>> # calculating R inverse from spatial data
>>>> rspat<-function(rhox=0.6,rhoy=**0.6)
>>>> {
>>>>    s2e<-1
>>>>    R<-s2e*eye(N)
>>>>    for(i in 1:N) {
>>>>      for (j in i:N){
>>>>        y1<-y[i]
>>>>        y2<-y[j]
>>>>        x1<-x[i]
>>>>        x2<-x[j]
>>>>        R[i,j]<-s2e*(rhox^abs(x2-x1))***(rhoy^abs(y2-y1)) # Core
>>>> AR(1)*AR(1)
>>>>        R[j,i]<-R[i,j]
>>>>      }
>>>>    }
>>>>    IR<-solve(R)
>>>>    IR
>>>> }
>>>>
>>>> ped<<-read.table("ped2new.txt"**,header=FALSE)
>>>> # Now work on the pedigree
>>>> ## A function to return Zinverse from pedigree
>>>>
>>>> ZGped<-function(ped)
>>>> {
>>>>    ped2<-data.frame(ped)
>>>>    lenp2<-length(unique(ped2$V1))**;lenp2 # how many Genotypes in
>>>> total in
>>>> the pedigree =40
>>>>    ln2<-length(g);ln2#ln2=nrow(**matdf)=30
>>>>    # calculate the new Z
>>>>    Zped<-model.matrix(~ matdf$genotypes -1)# has order N*t = 180 by 30
>>>>    dif<-(lenp2-ln2);dif # 40-30=10
>>>>    #print(c(lenp2,ln2,dif))
>>>>    zeromatrix<-zeros(nrow(matdf),**dif);zeromatrix # 180 by 10
>>>>    Z<-cbind(zeromatrix,Zped) # Design Matrix for random effect
>>>> (Genotypes):
>>>> 180 by 40
>>>>    # calculate the new G
>>>>    M<-matrix(0,lenp2,lenp2) # 40 by 40
>>>>    for (i in 1:nrow(ped2)) { M[ped2[i, 1], ped2[i, 2]] <- ped2[i, 3]  }
>>>>    G<-s2g*M # Genetic Variance covariance matrix for pedigree 2: 40 by
>>>> 40
>>>>    IG<-solve(G)
>>>>    return(list(IG=IG, Z=Z))
>>>> }
>>>>
>>>> ##########################
>>>> ##    Required packages    #
>>>> ############################
>>>> library(gmp)
>>>> library(knitr) # load this packages for publishing results
>>>> library(matlab)
>>>> library(Matrix)
>>>> library(psych)
>>>> library(foreach)
>>>> library(epicalc)
>>>> library(ggplot2)
>>>> library(xtable)
>>>> library(gdata)
>>>> library(gplots)
>>>>
>>>> #b=6;g=seq(1,30,1);rb=5;cb=6;**r=15;c=12;h2=0.3;rhox=0.6;**
>>>> rhoy=0.6;ped=0
>>>>
>>>> setup<-function(b,g,rb,cb,r,c,**h2,rhox=0.6,rhoy=0.6,ped="F")
>>>>    {
>>>>      # where
>>>>      # b   = number of blocks
>>>>      # t   = number of treatments per block
>>>>      # rb  = number of rows per block
>>>>      # cb  = number of columns per block
>>>>      # s2g = variance within genotypes
>>>>      # h2  = heritability
>>>>      # r   = total number of rows for the layout
>>>>      # c   = total number of columns for the layout
>>>>
>>>>      ### Check points
>>>>      if(b==" ")
>>>>          stop(paste(sQuote("block")," cannot be missing"))
>>>>      if(!is.vector(g) | length(g)<3)
>>>>          stop(paste(sQuote("treatments"**)," should be a vector and
>>>> more than
>>>> 2"))
>>>>      if(!is.numeric(b))
>>>>          stop(paste(sQuote("block"),"is not of class",
>>>> sQuote("numeric")))
>>>>      if(length(b)>1)
>>>>          stop(paste(sQuote("block"),"**has to be only 1 numeric
>>>> value"))
>>>>      if(!is.whole(b))
>>>>          stop(paste(sQuote("block"),"**has to be an",
>>>> sQuote("integer")))
>>>>
>>>>      ## Compatibility checks
>>>>      if(rb*cb !=length(g))
>>>>         stop(paste(sQuote("rb x cb")," should be equal to number of
>>>> treatment", sQuote("g")))
>>>>      if(length(g) != rb*cb)
>>>>        stop(paste(sQuote("the number of treatments"), "is not equal to",
>>>> sQuote("rb*cb")))
>>>>
>>>>      ## Generate the design
>>>>      g<<-g
>>>>      genotypes<-times(b) %do% sample(g,length(g))
>>>>      #genotypes<-rep(g,b)
>>>>      block<-rep(1:b,each=length(g))
>>>>      genotypes<-factor(genotypes)
>>>>      block<-factor(block)
>>>>
>>>>      ### generate the base design
>>>>      k<-c/cb # number of blocks on the x-axis
>>>>      x<<-rep(rep(1:r,each=cb),k)  # X-coordinate
>>>>
>>>>      #w<-rb
>>>>      l<-cb
>>>>      p<-r/rb
>>>>      m<-l+1
>>>>      d<-l*b/p
>>>>      y<<-c(rep(1:l,r),rep(m:d,r)) # Y-coordinate
>>>>
>>>>      ## compact
>>>>      matdf<<-data.frame(x,y,block,**genotypes)
>>>>      N<<-nrow(matdf)
>>>>      mm<-summ(matdf)
>>>>      ss<-des(matdf)
>>>>
>>>>      ## Identity matrices
>>>>      X<<-model.matrix(~block-1)
>>>>      h2<<-h2;rhox<<-rhox;rhoy<<-**rhoy
>>>>      s2g<<-varG(varR=1,h2)
>>>>      ## calculate G and Z
>>>>      ifelse(ped == "F",
>>>> c(IG<<-(1/s2g)*eye(length(g)),**Z<<-model.matrix(~matdf$**
>>>> genotypes-1)),
>>>> c(IG<<- ZGped(ped)[[1]],Z<<-ZGped(ped)**[[2]]))
>>>>      ## calculate R and IR
>>>>      s2e<-1
>>>>      ifelse(rhox==0 | rhoy==0, IR<<-(1/s2e)*eye(N),
>>>> IR<<-rspat(rhox=rhox,rhoy=**rhoy))
>>>>      C11<-t(X)%*%IR%*%X
>>>>      C11inv<-solve(C11)
>>>>      K<<-IR%*%X%*%C11inv%*%t(X)%*%**IR
>>>>        return(list(matdf=matdf,**summary=mm,description=ss))
>>>>
>>>>    }
>>>>
>>>>
>>>> #setup(b=6,g=seq(1,30,1),rb=5,**cb=6,r=15,c=12,h2=0.3,rhox=0.**
>>>> 6,rhoy=0.6,ped="F")[1]
>>>>
>>>> #system.time(out3<-setup(b=6,**g=seq(1,30,1),rb=5,cb=6,r=15,**
>>>> c=12,h2=0.3,rhox=0.6,rhoy=0.6,**ped="F"));out3
>>>>
>>>> #system.time(out4<-setup(b=16,**g=seq(1,196,1),rb=14,cb=14,r=**
>>>> 56,c=56,h2=0.3,rhox=0.6,rhoy=**0.6,ped="F"));out4
>>>>
>>>>
>>>> ##############################**######################
>>>> # The function below uses shortcuts from  textbook by Harville 1997
>>>> # uses inverse of a partitioned matrix technique
>>>> ##############################**######################
>>>>
>>>> mainF<-function(criteria=c("A"**,"D"))
>>>> {
>>>>    ### Variance covariance matrices
>>>>    temp<-t(Z)%*%IR%*%Z+IG - t(Z)%*%K%*%Z
>>>>    C22<-solve(temp)
>>>>    ##########################
>>>>    ##   Optimality Criteria
>>>>    #########################
>>>>    traceI<<-sum(diag(C22)) ## A-Optimality
>>>>    doptimI<<-log(det(C22)) # D-Optimality: minimize the det of the
>>>> inverse
>>>> of Inform Matrix
>>>>    #return(c(traceI,doptimI))
>>>>        if(criteria=="A") return(traceI)
>>>>        if(criteria=="D") return(doptimI)
>>>>    else{return(c(traceI,doptimI))**}
>>>> }
>>>>
>>>> # system.time(res1<-mainF(**criteria="A"));res1
>>>> # system.time(res2<-mainF(**criteria="D"));res2
>>>> #system.time(res3<-mainF(**criteria="both"));res3
>>>>
>>>>
>>>> ##############################**################
>>>> ### Swap function that takes matdf and returns
>>>> ## global values newnatdf and design matrices
>>>> ###    Z and IG
>>>> ##############################**################
>>>>
>>>> swapsimple<-function(matdf,**ped="F")
>>>> {
>>>>    # dataset D =mat1 generated from the above function
>>>>    ## now, new design after swapping is
>>>>    matdf<-as.data.frame(matdf)
>>>>    attach(matdf,warn.conflict=**FALSE)
>>>>    b1<-sample(matdf$block,1,**replace=TRUE);b1
>>>>    gg1<-matdf$genotypes[block==**b1];gg1
>>>>    g1<-sample(gg1,2);g1
>>>>    samp<-Matrix(c(g1=g1,block=b1)**,nrow=1,ncol=3,
>>>>                 dimnames=list(NULL,c("gen1","**gen2","block")));samp
>>>>    newGen<-matdf$genotypes
>>>>    newG<-ifelse(matdf$genotypes==**samp[,1] &
>>>> block==samp[,3],samp[,2],**matdf$genotypes)
>>>>    NewG<-ifelse(matdf$genotypes==**samp[,2] &
>>>> block==samp[,3],samp[,1],newG)
>>>>    NewG<-factor(NewG)
>>>>
>>>>    ## now, new design after swapping is
>>>>    newmatdf<-cbind(matdf,NewG)
>>>>    newmatdf<<-as.data.frame(**newmatdf)
>>>>    mm<-summ(newmatdf)
>>>>    ss<-des(newmatdf)
>>>>
>>>>    ## Identity matrices
>>>>     ifelse(ped == "F",
>>>> c(IG<<-(1/s2g)*eye(length(g)),**Z<<-model.matrix(~newmatdf$**NewG-1)),
>>>> c(IG<<-
>>>> ZGped(ped)[[1]],Z<<-ZGped(ped)**[[2]]))
>>>>    ## calculate R and IR
>>>>    C11<-t(X)%*%IR%*%X
>>>>    C11inv<-solve(C11)
>>>>    K<<-IR%*%X%*%C11inv%*%t(X)%*%**IR
>>>>    return(list(newmatdf=newmatdf,**summary=mm,description=ss))
>>>> }
>>>> #swapsimple(matdf,ped="F")[c(**2,3)]
>>>> #which(newmatdf$genotypes != newmatdf$NewG)
>>>> ##############################**#############
>>>> # for one design, swap pairs of treatments
>>>> # several times and store the traces
>>>> # of the successive swaps
>>>> ##############################**############
>>>>
>>>> optmF<-function(iterations=2,**verbose=FALSE)
>>>> {
>>>>    trace<-c()
>>>>
>>>>    for (k in 1:iterations){
>>>>
>>>> setup(b=6,g=seq(1,30,1),rb=5,**cb=6,r=15,c=12,h2=0.3,rhox=0.**
>>>> 6,rhoy=0.6,ped="F")
>>>>      swapsimple(matdf,ped="F")
>>>>      trace[k]<-mainF(criteria="A")
>>>>      iterations[k]<-k
>>>>      mat<-cbind(trace, iterations= seq(iterations))
>>>>     }
>>>>
>>>>    if (verbose){
>>>>       cat("***starting matrix\n")
>>>>       print(mat)
>>>>     }
>>>>    # iterate till done
>>>>    while(nrow(mat) > 1){
>>>>      high <- diff(mat[, 'trace']) > 0
>>>>      if (!any(high)) break  # done
>>>>      # find which one to delete
>>>>      delete <- which.max(high) + 1L
>>>>      #mat <- mat[-delete, ]
>>>>      mat <- mat[-delete,, drop=FALSE]
>>>>    }
>>>>    mat
>>>> }
>>>>
>>>> #system.time(test1<-optmF(**iterations=10));test1
>>>>
>>>> ##############################**##################
>>>> ##############################**#################
>>>>
>>>> swap<-function(matdf,ped="F",**criteria=c("A","D"))
>>>> {
>>>>    # dataset D =mat1 generated from the above function
>>>>    ## now, new design after swapping is
>>>>    matdf<-as.data.frame(matdf)
>>>>    attach(matdf,warn.conflict=**FALSE)
>>>>    b1<-sample(matdf$block,1,**replace=TRUE);b1
>>>>    gg1<-matdf$genotypes[block==**b1];gg1
>>>>    g1<-sample(gg1,2);g1
>>>>    samp<-Matrix(c(g1=g1,block=b1)**,nrow=1,ncol=3,
>>>>                 dimnames=list(NULL,c("gen1","**gen2","block")));samp
>>>>    newGen<-matdf$genotypes
>>>>    newG<-ifelse(matdf$genotypes==**samp[,1] &
>>>> block==samp[,3],samp[,2],**matdf$genotypes)
>>>>    NewG<-ifelse(matdf$genotypes==**samp[,2] &
>>>> block==samp[,3],samp[,1],newG)
>>>>    NewG<-factor(NewG)
>>>>
>>>>    ## now, new design after swapping is
>>>>    newmatdf<-cbind(matdf,NewG)
>>>>    newmatdf<<-as.data.frame(**newmatdf)
>>>>    mm<-summ(newmatdf)
>>>>    ss<-des(newmatdf)
>>>>
>>>>    ## Identity matrices
>>>>    #X<<-model.matrix(~block-1)
>>>>    #s2g<<-varG(varR=1,h2)
>>>>    ## calculate G and Z
>>>>    ifelse(ped == "F",
>>>> c(IG<<-(1/s2g)*eye(length(g)),**Z<<-model.matrix(~newmatdf$**NewG-1)),
>>>> c(IG<<-
>>>> ZGped(ped)[[1]],Z<<-ZGped(ped)**[[2]]))
>>>>    ## calculate R and IR
>>>>    C11<-t(X)%*%IR%*%X
>>>>    C11inv<-solve(C11)
>>>>    K<-IR%*%X%*%C11inv%*%t(X)%*%IR
>>>>    temp<-t(Z)%*%IR%*%Z+IG - t(Z)%*%K%*%Z
>>>>    C22<-solve(temp)
>>>>    ##########################
>>>>    ##   Optimality Criteria
>>>>    #########################
>>>>    traceI<-sum(diag(C22)) ## A-Optimality
>>>>    doptimI<-log(det(C22)) #
>>>>    #return(c(traceI,doptimI))
>>>>    if(criteria=="A") return(traceI)
>>>>    if(criteria=="D") return(doptimI)
>>>>    else{return(c(traceI,doptimI))**}
>>>> }
>>>>
>>>> #swap(matdf,ped="F",criteria="**both")
>>>>
>>>> ##############################**#############
>>>> ### Generate 25 initial designs
>>>> ##############################**#############
>>>> #rspatf<-function(design){
>>>> #  arr = array(1, dim=c(nrow(matdf),ncol(matdf)+**1,design))
>>>> #  l<-list(length=dim(arr)[3])
>>>> #  for (i in 1:dim(arr)[3]){
>>>> #    l[[i]]<-swapsimple(matdf,ped="**F")[[1]][,,i]
>>>> #  }
>>>> #  l
>>>> #}
>>>> #matd<-rspatf(design=5)
>>>> #matd
>>>>
>>>> #which(matd[[1]]$genotypes != matd[[1]]$NewG)
>>>> #which(matd[[2]]$genotypes != matd[[2]]$NewG)
>>>>
>>>>
>>>> ##############################**#################
>>>> ##############################**#################
>>>>
>>>> optm<-function(iterations=2,**verbose=FALSE)
>>>> {
>>>>    trace<-c()
>>>>
>>>>    for (k in 1:iterations){
>>>>
>>>> setup(b=6,g=seq(1,30,1),rb=5,**cb=6,r=15,c=12,h2=0.3,rhox=0.**
>>>> 6,rhoy=0.6,ped="F")
>>>>      trace[k]<-swap(matdf,ped="F",**criteria="A")
>>>>      iterations[k]<-k
>>>>      mat<-cbind(trace, iterations= seq(iterations))
>>>>    }
>>>>
>>>>    if (verbose){
>>>>      cat("***starting matrix\n")
>>>>      print(mat)
>>>>    }
>>>>    # iterate till done
>>>>    while(nrow(mat) > 1){
>>>>      high <- diff(mat[, 'trace']) > 0
>>>>      if (!any(high)) break  # done
>>>>      # find which one to delete
>>>>      delete <- which.max(high) + 1L
>>>>      #mat <- mat[-delete, ]
>>>>      mat <- mat[-delete,, drop=FALSE]
>>>>    }
>>>>    mat
>>>> }
>>>>
>>>> #system.time(res<-optm(**iterations=10));res
>>>> ##############################**###################
>>>> ##############################**##################
>>>> finalF<-function(designs,**swaps)
>>>> {
>>>>    Nmatdf<-list()
>>>>    OP<-list()
>>>>    Miny<-NULL
>>>>    Maxy<-NULL
>>>>    Minx<-NULL
>>>>    Maxx<-NULL
>>>>    for (i in 1:designs)
>>>>    {
>>>>
>>>> setup(b=4,g=seq(1,20,1),rb=5,**cb=4,r=10,c=8,h2=0.3,rhox=0.6,**
>>>> rhoy=0.6,ped="F")[1]
>>>>      mainF(criteria="A")
>>>>      for (j in 1:swaps)
>>>>      {
>>>>        OP[[i]]<- optmF(iterations=swaps)
>>>>        Nmatdf[[i]]<-newmatdf[,5]
>>>>        Miny[i]<-min(OP[[i]][,1])
>>>>        Maxy[i]<-max(OP[[i]][,1])
>>>>        Minx[i]<-min(OP[[i]][,2])
>>>>        Maxx[i]<-max(OP[[i]][,2])
>>>>      }
>>>>    }
>>>> return(list(OP=OP,Miny=Miny,**Maxy=Maxy,Minx=Minx,Maxx=Maxx,**
>>>> Nmatdf=Nmatdf))
>>>> # gives us both the Optimal conditions and designs
>>>> }
>>>>
>>>> ##############################**###################
>>>> sink(file= paste(format(Sys.time(),
>>>> "Final_%a_%b_%d_%Y_%H_%M_%S"),**"txt",sep="."),split=TRUE)
>>>> system.time(test1<-finalF(**designs=25,swaps=2000));test1
>>>> sink()
>>>>
>>>>
>>>> I expect results like this below
>>>>
>>>>  sink()
>>>>> finalF<-function(designs,**swaps)
>>>>>
>>>> +{
>>>> +   Nmatdf<-list()
>>>> +   OP<-list()
>>>> +   Miny<-NULL
>>>> +   Maxy<-NULL
>>>> +   Minx<-NULL
>>>> +   Maxx<-NULL
>>>> +   for (i in 1:designs)
>>>> +   {
>>>> +
>>>> setup(b=4,g=seq(1,20,1),rb=5,**cb=4,r=10,c=8,h2=0.3,rhox=0.6,**
>>>> rhoy=0.6,ped="F")[1]
>>>> +     mainF(criteria="A")
>>>> +     for (j in 1:swaps)
>>>> +     {
>>>> +       OP[[i]]<- optmF(iterations=swaps)
>>>> +       Nmatdf[[i]]<-newmatdf[,5]
>>>> +       Miny[i]<-min(OP[[i]][,1])
>>>> +       Maxy[i]<-max(OP[[i]][,1])
>>>> +       Minx[i]<-min(OP[[i]][,2])
>>>> +       Maxx[i]<-max(OP[[i]][,2])
>>>> +     }
>>>> +   }
>>>> +
>>>> return(list(OP=OP,Miny=Miny,**Maxy=Maxy,Minx=Minx,Maxx=Maxx,**Nmatdf=Nmatdf))
>>>> #
>>>> gives us both the Optimal conditions and designs
>>>> +}
>>>>
>>>>> sink(file= paste(format(Sys.time(),
>>>>> "Final_%a_%b_%d_%Y_%H_%M_%S"),**"txt",sep="."),split=TRUE)
>>>>> system.time(test1<-finalF(**designs=5,swaps=5));test1
>>>>>
>>>>     user  system elapsed
>>>>    37.88    0.00   38.04
>>>> $OP
>>>> $OP[[1]]
>>>>           trace iterations
>>>> [1,] 0.8961335          1
>>>> [2,] 0.8952822          3
>>>> [3,] 0.8934649          4
>>>>
>>>> $OP[[2]]
>>>>          trace iterations
>>>> [1,] 0.893955          1
>>>>
>>>> $OP[[3]]
>>>>           trace iterations
>>>> [1,] 0.9007225          1
>>>> [2,] 0.8971837          4
>>>> [3,] 0.8902474          5
>>>>
>>>> $OP[[4]]
>>>>           trace iterations
>>>> [1,] 0.8964726          1
>>>> [2,] 0.8951722          4
>>>>
>>>> $OP[[5]]
>>>>           trace iterations
>>>> [1,] 0.8973285          1
>>>> [2,] 0.8922594          4
>>>>
>>>>
>>>> $Miny
>>>> [1] 0.8934649 0.8939550 0.8902474 0.8951722 0.8922594
>>>>
>>>> $Maxy
>>>> [1] 0.8961335 0.8939550 0.9007225 0.8964726 0.8973285
>>>>
>>>> $Minx
>>>> [1] 1 1 1 1 1
>>>>
>>>> $Maxx
>>>> [1] 4 1 5 4 4
>>>>
>>>> $Nmatdf
>>>> $Nmatdf[[1]]
>>>>    [1] 30 8  5  28 27 29 1  26 24 22 13 6  17 18 2  19 14 11 3  23 10
>>>> 15 21
>>>> 9  25 4  7  20 12 16 14 17 15 5  8  6  19
>>>>   [38] 4  1  10 11 3  24 20 13 2  27 12 16 28 21 23 30 25 29 7  26 18 9
>>>>  22
>>>> 24 21 26 2  13 30 5  28 20 11 3  7  18 25
>>>>   [75] 22 16 4  17 19 27 29 10 23 6  12 15 14 1  9  8  12 11 3  8  5
>>>>  20 23
>>>> 22 7  15 19 29 24 27 13 2  6  1  21 26 25
>>>> [112] 10 16 14 18 4  30 17 9  28 29 9  7  27 11 2  30 18 8  14 19 20 15
>>>> 21
>>>> 4  3  16 24 13 28 26 10 12 6  5  25 1  17
>>>> [149] 23 22 21 2  23 16 4  10 9  22 30 24 1  27 3  20 12 5  26 17 28 11
>>>> 7
>>>> 14 8  25 19 13 18 29 15 6
>>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
>>>> 25
>>>> 26 27 28 29 30
>>>>
>>>> $Nmatdf[[2]]
>>>>    [1] 5  13 30 2  21 23 6  27 16 19 8  26 18 4  20 9  22 28 7  3  15
>>>> 10 11
>>>> 17 25 24 29 1  14 12 28 18 23 19 21 16 17
>>>>   [38] 29 13 7  15 27 25 22 10 1  2  5  30 9  20 3  14 24 26 4  6  12
>>>> 11 8
>>>> 8  18 25 12 5  23 21 4  9  17 20 1  2  6
>>>>   [75] 22 7  16 26 30 29 3  15 19 14 13 11 24 28 27 10 16 21 26 23 25 4
>>>>  9
>>>> 24 15 14 22 1  20 27 2  7  17 18 13 8  12
>>>> [112] 5  6  19 28 3  10 30 11 29 11 30 14 9  26 5  1  10 29 28 4  18 8
>>>>  24
>>>> 20 13 3  23 27 6  15 16 21 2  17 7  25 12
>>>> [149] 19 22 7  28 8  11 26 24 12 29 9  16 21 27 22 23 18 19 13 6  15 3
>>>>  1
>>>> 30 2  17 14 5  25 20 4  10
>>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
>>>> 25
>>>> 26 27 28 29 30
>>>>
>>>> $Nmatdf[[3]]
>>>>    [1] 7  25 4  30 12 11 14 13 26 1  10 21 15 22 29 19 27 16 2  24 28
>>>> 20 3
>>>> 5  23 8  18 6  17 9  6  21 9  15 11 17 13
>>>>   [38] 29 24 4  20 7  23 14 2  16 18 26 19 25 8  1  12 10 28 27 22 30 5
>>>>  3
>>>> 20 12 8  2  11 18 24 19 9  22 15 7  30 27
>>>>   [75] 17 29 6  3  5  1  21 25 28 14 23 4  16 26 13 10 20 29 26 25 15
>>>> 22 9
>>>> 10 28 17 18 21 6  16 7  1  3  24 11 2  4
>>>> [112] 14 8  5  13 27 23 30 19 12 6  30 1  2  7  28 18 8  20 10 4  25 14
>>>> 19
>>>> 27 11 13 29 12 9  3  26 22 21 16 15 17 24
>>>> [149] 5  23 17 6  25 11 21 29 5  26 13 7  15 2  9  4  18 30 3  8  20 24
>>>> 27
>>>> 22 19 16 28 12 1  23 14 10
>>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
>>>> 25
>>>> 26 27 28 29 30
>>>>
>>>> $Nmatdf[[4]]
>>>>    [1] 24 8  17 30 10 20 4  28 25 16 14 13 7  12 26 29 21 19 1  22 11 6
>>>>  23
>>>> 18 15 5  27 2  3  9  1  24 27 15 26 14 28
>>>>   [38] 20 8  5  4  29 2  25 9  13 6  21 7  22 30 17 3  10 12 19 11 18
>>>> 16 23
>>>> 25 18 3  29 1  4  8  6  9  30 2  14 11 16
>>>>   [75] 23 13 10 12 7  19 17 5  21 28 24 20 15 27 26 22 14 5  7  6  17 3
>>>>  1
>>>> 29 25 23 19 11 21 18 4  30 20 8  2  12 9
>>>> [112] 16 10 15 27 26 13 24 28 22 19 7  17 1  12 8  18 16 14 22 3  28 27
>>>> 25
>>>> 10 6  4  15 30 9  11 5  20 26 24 29 21 2
>>>> [149] 23 13 2  16 10 25 18 15 26 22 12 19 30 17 23 8  3  7  20 14 13 28
>>>> 9
>>>> 21 11 29 6  5  4  24 27 1
>>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
>>>> 25
>>>> 26 27 28 29 30
>>>>
>>>> $Nmatdf[[5]]
>>>>    [1] 12 18 8  22 9  21 2  1  29 13 30 25 17 6  16 5  26 7  3  14 23
>>>> 15 28
>>>> 27 10 24 20 11 19 4  20 30 14 27 25 4  6
>>>>   [38] 28 23 8  9  29 26 19 24 7  5  1  11 22 21 2  10 18 12 15 3  17
>>>> 13 16
>>>> 16 22 6  9  21 5  14 2  30 10 3  25 27 15
>>>>   [75] 28 7  17 20 11 8  19 29 12 26 24 13 1  4  18 23 4  16 10 25 5
>>>>  13 18
>>>> 19 22 7  28 30 23 21 11 2  14 9  20 24 8
>>>> [112] 17 1  15 29 6  12 27 3  26 14 8  26 6  20 9  15 23 3  22 7  30 25
>>>> 24
>>>> 1  10 19 21 4  11 2  18 17 13 28 29 27 16
>>>> [149] 12 5  19 2  4  5  15 21 17 7  25 8  6  16 20 29 10 18 1  12 26 28
>>>> 27
>>>> 11 14 23 22 9  3  13 30 24
>>>> Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
>>>> 25
>>>> 26 27 28 29 30
>>>>
>>>>
>>>>  Michael Dewey
>>> i...@aghmed.fsnet.co.uk
>>> http://www.aghmed.fsnet.co.uk/**home.html<http://www.aghmed.fsnet.co.uk/home.html>
>>>
>>> ______________________________**________________
>>> R-help@r-project.org mailing list
>>> https://stat.ethz.ch/mailman/**listinfo/r-help<https://stat.ethz.ch/mailman/listinfo/r-help>
>>> PLEASE do read the posting guide http://www.R-project.org/**
>>> posting-guide.html <http://www.R-project.org/posting-guide.html>
>>> and provide commented, minimal, self-contained, reproducible code.
>>>
>>
>>
>>
> ______________________________**________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/**listinfo/r-help<https://stat.ethz.ch/mailman/listinfo/r-help>
> PLEASE do read the posting guide http://www.R-project.org/**
> posting-guide.html <http://www.R-project.org/posting-guide.html>
> and provide commented, minimal, self-contained, reproducible code.
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to