Hi,
I'm new to R, so sorry if this is a simple answer. I'm currently trying to collapse some ordinal variables into a composite; the program ideally should take a data frame as input, perform a factor analysis, compute factor scores, sds, etc., and return the rescaled scores and loadings. The difficulty I'm having is that my data set contains a number of NA, which I am excluding from the analysis using complete.cases(), and thus the incomplete cases are "skipped". These functions are for a longitudinal data set with repeated waves of data, so the final rescaled scores from each wave need to be saved as variables grouped by a unique ID (DMID). The functions I'm trying to implement are as follows: weighted.sd<-function(x,w){ sum.w<-sum(w) sum.w2<-sum(w^2) mean.w<-sum(x*w)/sum(w) x.sd.w<-sqrt((sum.w/(sum.w^2-sum.w2))*sum(w*(x-mean.w)^2)) return(x.sd.w) } re.scale<-function(f.scores, raw.data, loadings){ fz.scores<-(f.scores+mean(f.scores))/(sd(f.scores)) means<-apply(raw.data,1,weighted.mean,w=loadings) sds<-apply(raw.data,1,weighted.sd,w=loadings) grand.mean<-mean(means) grand.sd<-mean(sds) final.scores<-((fz.scores*grand.sd)+grand.mean) return(final.scores) } get.scores<-function(data){ fact<-factanal(data[complete.cases(data),],factors=1,scores="regression") f.scores<-fact$scores[,1] f.loads<-fact$loadings[,1] rescaled.scores<-re.scale(f.scores, data[complete.cases(data),], f.loads) output.list<-list(rescaled.scores, f.loads) names(output.list)<-c("rescaled.scores", "factor.loadings") return(output.list) } init.dfs<-function(){ ab.1.df<-subset(ab.df,,select=c(dmid,g5oab2:g5ovb1)) ab.2.df<-subset(ab.df,,select=c(dmid,w2oab3:w2ovb1)) ab.3.df<-subset(ab.df,,select=c(dmid, w3oab3, w3oab4, w3oab7, w3oab8, w3ovb1)) ab.1.fa<-get.scores(ab.1.df[-1]) ab.2.fa<-get.scores(ab.2.df[-1]) ab.3.fa<-get.scores(ab.3.df[-1]) } Thanks for your help, Justin [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.