Dear R experts, I know this is not the appropriate place to post but I already tried eco (has not used ME) and geo (not available unit Aug 5), so please forgive me.
I fitted my spatial data to a glm.nb model. I decided to detect and correct for spatial autocorrelation using ME{spdep}. I received this warning after I added the eigenvectors into the model. Can you help me understand what I did wrong? Also, should I infer from the example below that spatial autocorrelation is negligible since the pr(ZI) values are so high? > tu1<-glm.nb(total.aeg~Total.number.of.units, data=inhdb, offset(x)) > tuME<-ME(total.aeg~Total.number.of.units, data=inhdb, family="poisson", offset(x), listw=sw.nb, alpha=0.5) > tuME Eigenvector ZI pr(ZI) 0 NA NA 0.40 1 43 NA 0.39 2 19 NA 0.39 3 18 NA 0.36 4 34 NA 0.35 5 23 NA 0.41 6 25 NA 0.39 7 56 NA 0.36 8 51 NA 0.47 9 46 NA 0.41 10 36 NA 0.32 etc..... > inhdb$eigen_43<-fitted(tuME)[,1] > inhdb$eigen_19<-fitted(tuME)[,2] > tuglmME<-glm.nb(total.aeg~Total.number.of.units+fitted(tuME), data=inhdb, offset(x)) There were 27 warnings (use warnings() to see them) Warning messages: 1: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... : iteration limit reached Thank you for your help! Best, Amy [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.