Hello: I am new to R Help so hopefully I will have included enough information to allow for valuable feedback on an error message I am receiving. I am trying to a fit a mixed effects cox model to binary elk telemetry data to look at movement decisions relative to other possibilities (specifically selection or avoidance of risk <- kauf_avg ) in a matched-case-control framework.
> sessionInfo() R version 2.15.1 (2012-06-22) Platform: x86_64-pc-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C [5] LC_TIME=English_United States.1252 attached base packages: [1] splines stats graphics grDevices utils datasets methods base other attached packages: [1] coxme_2.2-3 nlme_3.1-104 bdsmatrix_1.3-1 survival_2.36-14 AICcmodavg_1.28 lme4_0.999999-0 [7] Matrix_1.0-6 lattice_0.20-6 plotrix_3.4-5 loaded via a namespace (and not attached): [1] grid_2.15.1 stats4_2.15.1 tools_2.15.1 I have included a snapshot of the dataset below. The columns represents Animal ID (ID), Record # (Record), Location groupings (Strata), Use versus possible location (Used = 1), Variable of interest (kauf_avg), categorical data (Dummy_Age; Dummy_Time), and required time variable (faketime). FID_ ID Record Strata Used kauf_avg Dummy_Age Dummy_Time faketime 1 55 2 1 1 0.710135 3 2 1 2 55 2 1 0 0.555335 3 2 2 3 55 2 1 0 0.710135 3 2 2 4 55 2 1 0 2.100059 3 2 2 5 55 3 2 1 0.569817 3 3 1 6 55 3 2 0 0.558852 3 3 2 7 55 3 2 0 1.331789 3 3 2 8 55 3 2 0 2.306629 3 3 2 9 55 4 3 1 0.569817 3 1 1 10 55 4 3 0 0.616777 3 1 2 11 55 4 3 0 0.737392 3 1 2 12 55 4 3 0 1.637539 3 1 2 13 55 5 4 1 0.548600 3 2 1 14 55 5 4 0 0.222890 3 2 2 15 55 5 4 0 0.598823 3 2 2 > str(data) 'data.frame': 57195 obs. of 9 variables: $ FID_ : int 1 2 3 4 5 6 7 8 9 10 ... $ ID : int 55 55 55 55 55 55 55 55 55 55 ... $ Record : int 2 2 2 2 3 3 3 3 4 4 ... $ Strata : int 1 1 1 1 2 2 2 2 3 3 ... $ Used : int 1 0 0 0 1 0 0 0 1 0 ... $ kauf_avg : num 0.71 0.555 0.71 2.1 0.57 ... $ Dummy_Age : Factor w/ 4 levels "1","2","3","4": 3 3 3 3 3 3 3 3 3 3 ... $ Dummy_Time: Factor w/ 3 levels "1","2","3": 2 2 2 2 3 3 3 3 1 1 ... $ faketime : num 1 2 2 2 1 2 2 2 1 2 ... The faketime column is built using the following code: faketime <- rep(1, times = nrow(mccallrisk)) faketime[mccallrisk$Used == 0] <- 2 #2 for control, 1 for case data <- cbind(mccallrisk, faketime) rm(faketime) When I run the analysis code for a univariate model I have no issues: mcc.risk<-coxme(Surv(faketime,Used)~ kauf_avg + (1|ID)+strata(Strata),data=data) mcc.risk Cox mixed-effects model fit by maximum likelihood Data: data events, n = 14344, 57195 Iterations= 1 5 NULL Integrated Fitted Log-likelihood -19781.73 -19739.71 -19739.71 Chisq df p AIC BIC Integrated loglik 84.05 2 0 80.05 64.91 Penalized loglik 84.05 1 0 82.05 74.48 Model: Surv(faketime, Used) ~ kauf_avg + (1 | ID) + strata(Strata) Fixed coefficients coef exp(coef) se(coef) z p kauf_avg 0.0490237 1.050245 0.005330567 9.2 0 Random effects Group Variable Std Dev Variance ID Intercept 2e-02 4e-04 However, when I include a second variable the following error message follows. > mcc.risk_time<-coxme(Surv(faketime,Used)~ kauf_avg + Dummy_Time + (1|ID)+strata(Strata),data=data) Error in logfun(as.numeric(testvals[i, ]), varlist, vparm, kfun, ntheta, : NA/NaN/Inf in foreign function call (arg 2) I have removed all NA values from kauf_avg and neither Time or Age have NA values. The only information I can seem to find relevant to this error message is the following (I have contacted this person and am waiting to hear back but I thought I might post on here to see if anyone else had additional thoughts/comments): Feb 14, 2013; 7:49amRe: NA/NaN/Inf in foreign function call (arg 6) error from coxph function The NaN/Inf message is almost certainly from a singular fit. I would be interested in a copy of the data set to test it: data sets that cause this are rare, and help me to tune the convergence/signularity criteria in the program. Note: it is much easier to use coxph(survobj ~ therapy + ReceptorA + ReceptorB, data=sample.data) than to put "sample.data$" in front of every variable name; and easier to read as well. Terry Therneau (author of coxph function) Thank you, -- Michel Kohl <><><><><><><><><><> Ph.D. Student Department of Wildland Resources Utah State University [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.