Hi Thomas, Perhaps:
test = read.table("test.dat", header=T, dec=',') x <- test[,1:21] y <- test[, "Y"] mymodel <- lm(y ~ x) # Coefficients and more information summary(mymodel) # Plots for the residuals plotspar(mfrow=c(2,2)) plot(mymodel) See also ?lm HTH, Jorge On Tue, May 13, 2008 at 6:54 PM, Anja und Th. Sponsel <[EMAIL PROTECTED]> wrote: > I just have read the guide and I can do some small steps with cran but > I still have no clue... > > I have data like this: > X1 X2 X3 ... X21 Y > 1 0 0 0 ... 18 -0,07254 > 2 1 0 0 ... 6 -0,14921 > 3 0 1 0 ... 12 -0,04165 > 4 0 0 0 ... 8 0,08359 > 5 ... ... ... ... ... ... > 120 0 0 1 1 8 0,07928 > > My script is: > > require(stats); require(graphics) > > test = read.table("test.dat", header=T) > > x <- test[, 1:21] > > y <- test[, "Y"] > > lm(y ~ x) > > The error may be an invalid type (list) for variable x (see below): > Fehler in model.frame.default(formula = y ~ x, drop.unused.levels = > TRUE) : > ungültiger Typ (list) für die Variable 'x' > > Then I tried: > ... > > lm(data=test) > Then I get a lot of coefficients, but I'm not sure. That cant be the > result. > > Then I tried: > > summary(lm(data = wetter)) > > Call: > lm(data = wetter) > > Residuals: > ALL 120 residuals are 0: no residual degrees of freedom! > > Coefficients: (139 not defined because of singularities) > Estimate Std. Error t value Pr(>|t|) > (Intercept) 0.044747 NA NA NA > X2 0.660275 NA NA NA > X3 -0.097629 NA NA NA > X4 0.647851 NA NA NA > X5 -3.305631 NA NA NA > ... 0.249788 NA NA NA > > I am confused... > > Best regards, > Thomas > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.