Hi: I am trying to generate Beta-Binomial random variables and then calculate Binomial exact confidence intervals to the rate..I was wondering if I needed to add a constraint such that x<=n to it, how do I go about it. The reason is I am getting data where x>n which is giving a rate>1. Heres my code:
set.seed(111) k<-63 x<-NULL p<-rbeta(k,3,3)# so that the mean nausea rate is alpha/(alpha+beta) min<-10 max<-60 n<-as.integer(runif(k,min,max)) for(i in 1:k) x<-cbind(x,rbinom(300,n,p[i])) x<-t(x) rate<-t(t(x)/n) se_rate<-sqrt(rate*(1-rate)/n) # Exact Confidence Interval l_cl_exact<-qbeta(.025,x,n-x+1) u_cl_exact<-qbeta(.975,x+1,n-x) for (i in 1:63){ for (j in 1:300) { if (x[i,j]==0) { l_cl_exact[i,j]<-0 u_cl_exact[i,j]<-u_cl_exact[i,j] } else if (x[i,j]==n[i]) { l_cl_exact[i,j]<-l_cl_exact[i,j] u_cl_exact[i,j]<-1 } else l_cl_exact[i,j]<-l_cl_exact[i,j] u_cl_exact[i,j]<-u_cl_exact[i,j] #print(c(i,j)) } } Really appreciate any help. Thanks Anamika ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.