I have 11 possible predictor variables and use them to model quite a few target variables. In search for a consistent manner and possibly non-manual manner to identify the significant predictor vars out of the eleven I thought the option "select=T" might do.
Example: (here only 4 pedictors) first is vanilla with "select=F" > fit1<-gam(target~s(mgs)+s(gsd)+s(mud)+s(ssCmax),family=quasi(link=log),data=wspe1,select=F) > summary(fit1) Family: quasi Link function: log Formula: target ~ s(mgs) + s(gsd) + s(mud) + s(ssCmax) Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -34.57 20.47 -1.689 0.0913 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Approximate significance of smooth terms: edf Ref.df F p-value s(mgs) 2.335 2.623 0.260 0.829 s(gsd) 6.868 7.506 13.955 < 2e-16 *** s(mud) 8.990 9.000 11.727 < 2e-16 *** s(ssCmax) 6.770 6.978 6.664 7.68e-08 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 R-sq.(adj) = 0.402 Deviance explained = 40.4% GCV score = 8.8563e+05 Scale est. = 8.8053e+05 n = 4511 then turn select=TRUE fit2<-gam(target~s(mgs)+s(gsd)+s(mud)+s(ssCmax),family=quasi(link=log),data=wspe1,select=TRUE) > summary(fit2) Family: quasi Link function: log Formula: target ~ s(mgs) + s(gsd) + s(mud) + s(ssCmax) Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.1585 1.7439 0.091 0.928 Approximate significance of smooth terms: edf Ref.df F p-value s(mgs) 2.456 8 24.50 <2e-16 *** s(gsd) 7.272 9 14.33 <2e-16 *** s(mud) 7.678 9 20.38 <2e-16 *** s(ssCmax) 6.556 9 14.36 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 R-sq.(adj) = 0.397 Deviance explained = 40% GCV score = 8.9209e+05 Scale est. = 8.8715e+05 n = 4511 I seem to not fully understand how to work with "select". The predictor "mgs" is obviously not significant, as seen from "fit" (above), yet here it appears as significant. Why was it not dropped? How are not-significant predictors are identified? -- View this message in context: http://r.789695.n4.nabble.com/mgcv-how-select-significant-predictor-vars-when-using-gam-select-TRUE-using-automatic-optimization-tp4664510.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.