I found the solution: http://stats.stackexchange.com/questions/12993/how-to-setup-and-interpret-anova-contrasts-with-the-car-package-in-r
Sorry for the trouble. On Sun, Mar 24, 2013 at 8:58 PM, Erin Hodgess <erinm.hodg...@gmail.com>wrote: > Dear R People: > > I have the following in a file: > > resp factA factB > 39.5 low B- > 38.6 high B- > 27.2 low B+ > 24.6 high B+ > 43.1 low B- > 39.5 high B- > 23.2 low B+ > 24.2 high B+ > 45.2 low B- > 33.0 high B- > 24.8 low B+ > 22.2 high B+ > > and I construct the data frame: > > > collard.df <- read.table("collard.txt",header=TRUE) > > collard.aov <- aov(resp~factA*factB,data=collard.df) > > summary(collard.aov) > Df Sum Sq Mean Sq F value Pr(>F) > factA 1 36.4 36.4 5.511 0.0469 * > factB 1 716.1 716.1 108.419 6.27e-06 *** > factA:factB 1 13.0 13.0 1.971 0.1979 > Residuals 8 52.8 6.6 > --- > Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 > > tapply(collard.df$resp,list(collard.df$factA,collard.df$factB),mean) > B- B+ > high 37.03333 23.66667 > low 42.60000 25.06667 > > > > Fair enough. Let's pretend for a second that interaction existed. Then I > want to set up contrasts such that mean(high) - mean(low) = 0 and mean(B+) > - mean(B-) = 0. > > I know that this is really simple, but I've tried all kinds of things with > glht and am not sure that I'm on the right track. Sorry for the trouble > for the simple question. > > Thanks, > erin > > > > > -- > Erin Hodgess > Associate Professor > Department of Computer and Mathematical Sciences > University of Houston - Downtown > mailto: erinm.hodg...@gmail.com -- Erin Hodgess Associate Professor Department of Computer and Mathematical Sciences University of Houston - Downtown mailto: erinm.hodg...@gmail.com [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.