Many thanks
At 2013-03-14 00:23:43,"Richard M. Heiberger" <r...@temple.edu> wrote: Meng, What seems to be going on is that the covariates are handled very differently in TukeyHSD and in glht. Please see the interaction_average and covariate_average arguments to glht. I ran your example twice, first as you did, with the covariates after the factor. x2 is not significant if the factor comes first. The second time I placed the covariates before the factor. > result_aov <- aov(y ~ method + x1 + x2, data=meng) > anova(result_aov) Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F) method 2 4.4705 2.23525 41.3822 1.170e-08 *** x1 1 2.8352 2.83519 52.4892 1.363e-07 *** x2 1 0.0747 0.07469 1.3827 0.2507 Residuals 25 1.3504 0.05401 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > result2_aov <- aov(y ~ x1 + x2 + method, data=meng) > anova(result2_aov) Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F) x1 1 5.4399 5.4399 100.7113 2.985e-10 *** x2 1 0.3134 0.3134 5.8017 0.02371 * method 2 1.6271 0.8135 15.0616 5.100e-05 *** Residuals 25 1.3504 0.0540 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Looking at the plot of your data shows a very interesting pattern. > xyplot(y ~ x1 + x2 | method, outer=TRUE, data=meng) b and c both give higher values of y than does a. You will also see that in the table of means. Although I leave the interpretation of x1 and x2 to you, my inclination is to drop x2 and look at the ancova of method and x1. ancova is in the HH package. ## install.packages("HH") ## if you don't have it yet. library(HH) > result3_aov <- ancova(y ~ method + x1, data=meng) > result3_aov Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F) method 2 4.4705 2.23525 40.782 9.616e-09 *** x1 1 2.8352 2.83519 51.728 1.226e-07 *** Residuals 26 1.4251 0.05481 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > update(attr(result3_aov, "trellis"), ylim=c(3.5, 6.7)) > Now it looks like conditional on x1, all three methods differ. Rich On Wed, Mar 13, 2013 at 7:15 AM, meng <laomen...@163.com> wrote: Hi all: I have a question about multi-comparison. The data is in the attachment. My purpose: Compare the predicted means of the 3 methods(a,b,c) pairwisely. I have 3 ideas: #idea1 result_aov<-aov(y~ method + x1 + x2) TukeyHSD(result_aov) diff lwr upr p adj b-a 0.845 0.5861098 1.1038902 0.0000001 c-a 0.790 0.5311098 1.0488902 0.0000002 c-b -0.055 -0.3138902 0.2038902 0.8578386 #idea2 library(multcomp) summary(glht(result_aov,linfct=mcp(method="Tukey"))) Estimate Std. Error t value Pr(>|t|) b - a == 0 0.3239 0.1402 2.309 0.0683 . c - a == 0 -0.3332 0.1937 -1.720 0.2069 c - b == 0 -0.6570 0.1325 -4.960 <0.001 *** #idea3 #ref=a dat$method <- relevel(dat$method, ref="a") lm_ref_a<-lm(y~method + x1 + x2) summary(lm_ref_a) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.92202 0.64418 1.431 0.1647 methodb 0.32389 0.14025 2.309 0.0295 * methodc -0.33316 0.19372 -1.720 0.0978 . x1 0.57935 0.09356 6.192 1.78e-06 *** x2 0.13596 0.11563 1.176 0.2507 #ref=b dat$method <- relevel(dat$method, ref="b") lm_ref_b<-lm(y~method + x1 + x2) summary(lm_ref_b) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.24591 0.73770 1.689 0.1037 methoda -0.32389 0.14025 -2.309 0.0295 * methodc -0.65705 0.13248 -4.960 4.14e-05 *** In summary: idea1: a vs b:pvalue=0.0000001 a vs c:pvalue=0.0000002 b vs c:pvalue=0.8578386 idea2: a vs b:pvalue=0.0683 a vs c:pvalue=0.2069 b vs c:pvalue<0.001 idea3: a vs b:pvalue=0.0295 a vs c:pvalue=0.0978 b vs c:pvalue=4.14e-05 So the result of 3 ideas are different,and I don't know which one is correct. Many thanks for your help. My best ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.