I have a data in the following form : CIN TRN_TYP 9079954 1 9079954 2 9079954 3 9079954 4 9079954 5 9079954 4 9079954 5 9079954 6 9079954 7 9079954 8 9079954 9 9079954 9 . . . . . . there are 100 types of CIN (9079954,12441087,15246633,...) and respective TRN_TYP
first of all, I want this data to be grouped into basket format: 9079954 1, 2, 3, 4, 5, .... 12441087 19, 14, 21, 3, 7, ... . . . and then apply eclat from arules package to find frequent patterns. 1) I ran the following code: file<-read.csv("D:/R/Practice/Data_Input_NUM.csv") file <- file[!duplicated(file),] eclat(split(file$TRN_TYP,file$CIN)) but it gave me the following error: Error in asMethod(object) : can not coerce list with transactions with duplicated items 2) I ran this code: file<-read.csv("D:/R/Practice/Data_Input_NUM.csv") file_new<-file[,c(3,6)] # because my file Data_Input_NUM has many other columns as well, so I selecting only CIN and TRN_TYP file_new <- file_new[!duplicated(file_new),] eclat(split(file_new$TRN_TYP,file_new$CIN)) but again: Error in eclat(split(file_new$TRN_TYP, file_new$CIN)) : internal error in trio library PLEASE HELP [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.