Dear Cedric, If I understand correctly what you want to do, and if you're willing to assume that the variables are normally distributed, then you should be able to use any of the latent-variable structural-equation-modeling packages in R, such as sem, OpenMX, or lavaan.
Here's an artificial example using the sem package: ------------ snip ---------- > set.seed(12345) > zeta <- rnorm(1000) > y <- 1 + 2*zeta + rnorm(1000, 0, 1) > x <- zeta + rnorm(1000) > plot(x, y) > Data <- data.frame(x, y) > summary(lm(y ~ x)) # biased Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max -6.6339 -1.1406 0.0299 1.1573 6.5652 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.04007 0.05514 18.86 <2e-16 *** x 1.06089 0.04012 26.44 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.743 on 998 degrees of freedom Multiple R-squared: 0.4119, Adjusted R-squared: 0.4113 F-statistic: 699.1 on 1 and 998 DF, p-value: < 2.2e-16 > plot(x, y) # not shown > > library(sem) > > eqns <- specifyEquations() 1: y = alpha*Intercept + beta*zeta 2: x = 1*zeta 3: V(y) = sigma 4: V(x) = 1 5: V(zeta) = phi 6: Read 5 items > model <- sem(eqns, data=Data, raw=TRUE, fixed.x="Intercept") > summary(model) Model fit to raw moment matrix. Model Chisquare = 0.2264654 Df = 1 Pr(>Chisq) = 0.6341572 AIC = 8.226465 BIC = -6.68129 Normalized Residuals Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.1635 0.1711 0.2189 0.2564 0.4759 Parameter Estimates Estimate Std Error z value Pr(>|z|) alpha 1.0400668 0.05507397 18.884905 1.518098e-79 y <--- Intercept beta 2.2553406 0.14197058 15.885971 7.926103e-57 y <--- zeta sigma 0.6404697 0.25612060 2.500657 1.239632e-02 y <--> y phi 0.8881856 0.08444223 10.518263 7.117323e-26 zeta <--> zeta Iterations = 15 > library(car) > linearHypothesis(model, c("alpha = 1", "beta = 2", "sigma = 1", "phi = 1")) # true parameter values Linear hypothesis test Hypothesis: alpha = 1 beta = 2 sigma = 1 phi = 1 Model 1: restricted model Model 2: model Res.Df Df Chisq Pr(>Chisq) 1 5 2 1 4 3.8285 0.4297 ------------ snip ---------- For other distributional assumptions, you'd have to write your own objective function but you may still be able to use sem or one of the other SEM packages. I hope this helps, John ----------------------------------------------- John Fox Senator McMaster Professor of Social Statistics Department of Sociology McMaster University Hamilton, Ontario, Canada > -----Original Message----- > From: r-help-boun...@r-project.org [mailto:r-help-bounces@r- > project.org] On Behalf Of Cedric Sodhi > Sent: Saturday, March 02, 2013 4:56 PM > To: Rui Barradas > Cc: r-help@r-project.org > Subject: Re: [R] Errors-In-Variables in R > > Perhaps it would have been clearer that this is no homework if I > hadn't forgotten to say what [1] is. Sorry for that. > > [1] https://bugs.r-project.org/bugzilla3/show_bug.cgi?id=15225 > > (This is no homework but genuinely adresses the problem that R to my > knowledge does not have models for error in variables) > > > On Sat, Mar 02, 2013 at 09:34:21PM +0000, Rui Barradas wrote: > > There's a no homework policy in R-help. > > > > Rui Barradas > > > > Em 02-03-2013 18:28, Cedric Sodhi escreveu: > > > In reference to [1], how would you solve the following regression > > > problem: > > > > > > Given observations (X_i,Y_i) with known respective error > distributions > > > (e_X_i,e_Y_i) (say, 0-mean Gaussian with known STD), find the > parameters > > > a and b which maximize the Likelihood of > > > > > > Y = a*X + b > > > > > > Taking the example further, how many of the very simplified > assumptions > > > from the above example can be lifted or eased and R still has a > method > > > for finding an errors-in-variables fit? > > > > > > ______________________________________________ > > > R-help@r-project.org mailing list > > > https://stat.ethz.ch/mailman/listinfo/r-help > > > PLEASE do read the posting guide http://www.R-project.org/posting- > guide.html > > > and provide commented, minimal, self-contained, reproducible code. > > > > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting- > guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.