HI Alain, Try this: df.breaks<-data.frame(id=df[,1],sapply(df[,-1],function(x) findInterval(x,quantile(x),rightmost.closed=TRUE)),stringsAsFactors=FALSE) df.breaks # id a b c #1 x01 1 1 1 #2 x02 1 1 1 #3 x03 2 2 2 #4 x04 3 3 3 #5 x05 4 4 4 #6 x06 4 4 4 A.K.
----- Original Message ----- From: D. Alain <dialva...@yahoo.de> To: Mailinglist R-Project <r-help@r-project.org> Cc: Sent: Tuesday, February 19, 2013 5:01 AM Subject: [R] recode data according to quantile breaks Dear R-List, I would like to recode my data according to quantile breaks, i.e. all data within the range of 0%-25% should get a 1, >25%-50% a 2 etc. Is there a nice way to do this with all columns in a dataframe. e.g. df<- f<-data.frame(id=c("x01","x02","x03","x04","x05","x06"),a=c(1,2,3,4,5,6),b=c(2,4,6,8,10,12),c=c(1,3,9,12,15,18)) df id a b c 1 x01 1 2 1 2 x02 2 4 3 3 x03 3 6 9 4 x04 4 8 12 5 x05 5 10 15 6 x06 6 12 18 #I can do it in very complicated way apply(df[-1],2,quantile) a b c 0% 1.0 2.0 1.0 25% 2.2 4.5 4.5 50% 3.5 7.0 10.5 75% 4.8 9.5 14.2 100% 6.0 12.0 18.0 #then df$a[df$a<=2.2]<-1 ... #result should be df.breaks id a b c x01 1 1 1 x02 1 1 1 x03 2 2 2 x04 3 3 3 x05 4 4 4 x06 4 4 4 But there must be a way to do it more elegantly, something like df.breaks<- apply(df[-1],2,recode.by.quantile) Can anyone help me with this? Best wishes Alain [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.