Dear R-helpers, i have a problem with a glm-model. I am trying to fit models with the log as link function instead of the logit. However, in some cases glm fails to estimate those models and suggests to give start values. However, when I set start = coef(logistic_model) within the function call, glm still says it cannot find starting values? This seems to be more of a problem, when I include a continous predictor in the model (age instead of group). find below a minimal example.
Do I need to set other/better starting values? I would greatly appreciate any hints! Best, Felix x = structure(list(Alter = c(28, 72, 48, 53, 49, 56, 47, 20, 72, 26, 28, 28, 25, 63, 42, 23, 68, 63, 44, 23, 23, 47, 30, 22, 21, 30, 26, 47, 40, 43, 23, 78, 29, 20, 49, 70, 24, 49, 43, 49, 68, 50, 42, 27, 70, 68, 46, 42, 40, 44, 48, 24, 23, 24, 56, 60, 66, 40, 71, 45, 37, 71, 41, 53, 48, 34, 52, 26, 76, 46, 65, 69, 75, 59, 30, 54, 69, 46, 50, 62, 38, 34, 30, 29, 73, 20, 57, 64, 40, 28, 21, 36, 65, 22, 69, 24, 38, 61, 70, 47, 61, 20, 58, 29, 35, 23, 29, 22, 21, 56, 37, 79, 27, 25, 75, 64, 22, 48, 36, 24, 44, 38, 23, 54, 76, 43, 30, 47, 48, 23, 68, 28, 44, 54, 43, 35, 47, 49, 44, 53, 26, 24, 56, 34, 39, 67, 74, 49, 55, 39, 58, 69, 46, 56, 69, 69, 26, 58, 41, 46, 40, 49, 24, 29, 24, 71, 41, 61, 27, 25, 38, 56, 26, 53, 39, 77, 40, 53, 61, 61, 54, 62, 28, 71, 42, 67, 44, 20, 40, 27, 27, 22, 71, 24, 31, 63, 24, 22, 30, 42, 43, 23, 46, 49, 21, 25, 30, 64, 29, 52, 29, 50, 57, 50, 53, 50, 34, 58, 42, 35, 50, 35, 35, 63, 42, 37, 64, 34, 56, 70, 48, 23, 43, 26, 52, 24, 31, 27, 34, 23, 44, 51, 41, 69, 47, 37, 68, 42, 28, 25), Arthrose = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("nicht erkrankt", "erkrankt"), class = "factor"), Gruppe = c(2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)), .Names = c("Alter", "Arthrose", "Gruppe" ), row.names = c(6L, 8L, 49L, 53L, 54L, 84L, 87L, 88L, 110L, 139L, 145L, 156L, 167L, 176L, 177L, 178L, 189L, 193L, 216L, 237L, 245L, 269L, 272L, 280L, 303L, 314L, 315L, 326L, 338L, 344L, 345L, 352L, 365L, 366L, 377L, 393L, 401L, 404L, 409L, 439L, 469L, 505L, 510L, 544L, 552L, 559L, 561L, 586L, 597L, 598L, 601L, 607L, 611L, 630L, 650L, 663L, 672L, 673L, 689L, 690L, 719L, 747L, 794L, 809L, 818L, 819L, 840L, 869L, 878L, 886L, 905L, 913L, 915L, 924L, 937L, 955L, 963L, 970L, 978L, 985L, 997L, 1005L, 1021L, 1022L, 1033L, 1040L, 1041L, 1043L, 1066L, 1068L, 1084L, 1099L, 1112L, 1113L, 1125L, 1134L, 1154L, 1155L, 1166L, 1171L, 1195L, 1208L, 1216L, 1217L, 1229L, 1230L, 1236L, 1242L, 1252L, 1288L, 1308L, 1360L, 1365L, 1371L, 1383L, 1384L, 1402L, 1406L, 1412L, 1413L, 1438L, 1448L, 1451L, 1455L, 1459L, 1478L, 1483L, 1492L, 1508L, 1511L, 1519L, 1531L, 1554L, 1569L, 1573L, 1590L, 1615L, 1629L, 1649L, 1651L, 1654L, 1660L, 1661L, 1674L, 1684L, 1687L, 1690L, 1696L, 1724L, 1730L, 1767L, 1775L, 1779L, 1780L, 1800L, 1801L, 1829L, 1837L, 1848L, 1884L, 1909L, 1916L, 1933L, 1934L, 1952L, 1970L, 1991L, 2021L, 2024L, 2029L, 2040L, 2060L, 2095L, 2112L, 2115L, 2122L, 2131L, 2145L, 2150L, 2173L, 2188L, 2189L, 2193L, 2197L, 2240L, 2251L, 2252L, 2264L, 2266L, 2277L, 2313L, 2315L, 2318L, 2324L, 2331L, 2336L, 2344L, 2345L, 2357L, 2366L, 2384L, 2392L, 2413L, 2422L, 2453L, 2474L, 2477L, 2480L, 2484L, 2499L, 2502L, 2518L, 2548L, 2551L, 2565L, 2575L, 2584L, 2607L, 2608L, 2617L, 2620L, 2644L, 2653L, 2654L, 2655L, 2667L, 2669L, 2672L, 2686L, 2697L, 2733L, 2739L, 2742L, 2750L, 2764L, 2774L, 2783L, 2787L, 2807L, 2817L, 2841L, 2847L, 2850L, 2852L, 2860L, 2863L, 2889L, 2908L, 2917L, 2924L), class = "data.frame") Group_logit_model = glm(data = x, Arthrose ~ Gruppe, family=binomial(link = logit)) Group_log_model = glm(data = x, Arthrose ~ Gruppe, family=binomial(link = log)) Age_logit_model = glm(data = x, Arthrose ~ Alter, family=binomial(link = logit)) Age_log_model = glm(data = x, Arthrose ~ Alter, family=binomial(link = log)) Age_log_model_start = glm(data = x, start = coef(Age_logit_model), Arthrose ~ Alter, family=binomial(link = log)) Dr. rer. nat. Felix Fischer Diplom-Psychologe Institut für Sozialmedizin, Epidemiologie und Gesundheitsökonomie Charité - Universitätsmedizin Berlin Luisenstrasse 57 10117 Berlin Tel: 030 450 529 104 Fax: 030 450 529 902 http://epidemiologie.charite.de ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.