Karl, I will look at your function later and comment on it.
RIght now, I am replying to your comment "The levels should preferably be ordered by the group means, ...." One of the features of the tabular printout from the mmc function, and of both the MMC plot and the plotMatchMMC plot, is that the levels are ordered by the group means. Rich On Tue, Jan 15, 2013 at 6:46 AM, Karl Ove Hufthammer <k...@huftis.org>wrote: > Den 2013-01-14 19:58 skreiv Richard M. Heiberger: > > Please look at the MMC (Mean-mean Multiple Comparisons) plot in the HH >> package. >> It displays both the means and the differences. >> >> install.packages("HH") ## if you don't already have it. >> library(HH) >> ?MMC >> > > I have now coded a very quick-and-dirty solution for my line graph. > Example follows. I use the results of the 'cld' function in multcomp > to calculcate which groups are significantly different from each other. > > Important note: The LetterMatrix object contains the needed > data, but the rows are not in the same order as the original levels, > and unfortunately the row names do *not* match the level names > (spaces seems to be stripped -- I don't know why). That's the reason > I remove the spaces in the example below. > > Note: The levels should preferably be ordered by the group means, > but the function works (modulo any bugs) even if they're not. > Dotted lines are then used to indicate significant differences. > > Important note: There are bound to be bugs. Do check the results > before using the resulting graph. > > > # Calculate non-significance lines for Tukey HSD > tukeyHSDLines=function(l, removeEndLines=TRUE, removeSingleGroups=FALSE) { > > # Calculate Tukey HSD values > > library(multcomp) > l.glht=glht(l, linfct = mcp(trt = "Tukey")) > > # Calculcate a compact letter display (CLD) > l.cld=cld(l.glht) > lmat=l.cld$mcletters$**LetterMatrix[levels(d$trt),] > > # Calculate the non-significance lines that should be > # drawn, based on the CLD data > calc.lines=function(x) { > r=rle(x) > lend=cumsum(r$lengths) # Line end index > lstart=c(1,lend[-length(lend)]**+1) # Line start index > d2=data.frame(lstart=lstart-.**4, lend=lend+.4, nodraw=!r$values) > > if( removeEndLines ) { > if(d2$nodraw[1]) d2=d2[-1,] # Remove 'leading' dotted > lines > if(d2$nodraw[nrow(d2)]) d2=d2[-nrow(d2),] # Remove 'trailing' dotted > lines > } > d2 > } > > linlist=apply(lmat, 2, calc.lines) > lindat=do.call(rbind, linlist) > lindat$y=rep(seq_along(**linlist), times=sapply(linlist, nrow)) > > if (removeSingleGroups) { > lindat=subset(lindat, !(y %in% which(tabulate(lindat$y)==1))) > lindat$y=as.numeric(factor(**lindat$y)) > } > lindat > } > > > # Example: > library(DAAG) > d=rice # The dataset to use > levels(d$trt)=gsub(" ", "", levels(d$trt)) # Remove spaces from level names > # d$trt=reorder(d$trt, -d$ShootDryMass) # Graph looks better with > reordered factor > l=aov(ShootDryMass ~ trt, data=d) # Fit a one-way ANOVA > > lindat=tukeyHSDLines(l) > lindat$y=150-lindat$y*3 > > library(ggplot2) > > ggplot(d, aes(x=trt, y=ShootDryMass)) + geom_boxplot(outlier.colour=**NA) > + > geom_jitter(col="red", size=3, position=position_jitter(**width=.1)) + > geom_segment(aes(x=lstart, xend=lend, y=y, yend=y, linetype=nodraw), > lindat) > > > -- > Karl Ove Hufthammer > > ______________________________**________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/**listinfo/r-help<https://stat.ethz.ch/mailman/listinfo/r-help> > PLEASE do read the posting guide http://www.R-project.org/** > posting-guide.html <http://www.R-project.org/posting-guide.html> > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.