Hi AK Regarding the missing values, I would like to find out the patterns of missing values in my data set. I know the overall values for each variable.
using colSums(is.na(df)) but what I wanted is to find out the percentages with each level of the variable with my dataset, as in if there is more missing data in females or males etc?. I installed "mi" package, but unable to produce a plot with it( i would also like to produce a plot). I searched the responses in the relevant sections in r but could n't find an answer. Thanks, On Wed, Jan 9, 2013 at 12:31 PM, arun kirshna [via R] < ml-node+s789695n465499...@n4.nabble.com> wrote: > HI, > > In your dataset, the "exchangeable" or "compound symmetry" may work as > there are only two levels for time. In experimental data analysis > involving a factor time with more than 2 levels, randomization of > combination of levels of factors applied to the subject/plot etc. gets > affected as time is unidirectional. I guess your data is observational, > and with two time levels, it may not hurt to use "CS" as option, though, it > would help if you check different options. > > In the link I sent previously, QIC was used. > http://stats.stackexchange.com/questions/577/is-there-any-reason-to-prefer-the-aic-or-bic-over-the-other > > I am not sure whether AIC/BIC is better than QIC or viceversa. > > You could sent email to the maintainer of geepack (Jun Yan <[hidden > email]<http://user/SendEmail.jtp?type=node&node=4654996&i=0>>). > > Regarding the reference links, > You can check this link "www.jstatsoft.org/v15/i02/paper" . Other > references are in the paper. > " > 4.3. Missing values (waves) > In case of missing values, the GEE estimates are consistent if the values > are missing com- > pletely at random (Rubin 1976). The geeglm function assumes by default > that observations > are equally separated in time. Therefore, one has to inform the function > about different sep- > arations if there are missing values and other correlation structures than > the independence or > exchangeable structures are used. The waves arguments takes an integer > vector that indicates > that two observations of the same cluster with the values of the vector of > k respectively l have > a correlation of rkl ." > > Hope it helps. > A.K. > > > > > ----- Original Message ----- > From: rex2013 <[hidden > email]<http://user/SendEmail.jtp?type=node&node=4654996&i=1>> > > To: [hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=2> > Cc: > Sent: Tuesday, January 8, 2013 5:29 PM > Subject: Re: [R] random effects model > > Hi > > Thanks a lot, the corstr "exchangeable"does work. Didn't strike to me > for so long. Does the AIC value come out with the gee output? > > By reference, I meant reference to a easy-read paper or web address > that can give me knowledge about implications of missing data. > > Ta. > > On 1/8/13, arun kirshna [via R] > <[hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=3>> > wrote: > > > > > > > HI, > > BP.stack5 is the one without missing values. > > na.omit(....). Otherwise, I have to use the option na.action=.. in the > > ?geese() statement > > > > You need to read about the correlation structures. IN unstructured > option, > > more number of parameters needs to be estimated, In repeated measures > > design, when the underlying structure is not known, it would be better > to > > compare using different options (exchangeable is similar to compound > > symmetry) and select the one which provide the least value for AIC or > BIC. > > Have a look at > > > > > http://stats.stackexchange.com/questions/21771/how-to-perform-model-selection-in-gee-in-r > > It's not clear to me "reference to write about missing values". > > A.K. > > > > > > > > > > ----- Original Message ----- > > From: Usha Gurunathan <[hidden > > email]<http://user/SendEmail.jtp?type=node&node=4654996&i=4>> > > > To: arun <[hidden > > email]<http://user/SendEmail.jtp?type=node&node=4654996&i=5>> > > > Cc: > > Sent: Monday, January 7, 2013 6:12 PM > > Subject: Re: [R] random effects model > > > > Hi AK > > > > 2)I shall try putting exch. and check when I get home. Btw, what is > > BP.stack5? is it with missing values or only complete cases? > > > > I guess I am still not clear about the unstructured and exchangeable > > options, as in which one is better. > > > > 1)Rgding the summary(p): NA thing, I tried putting one of my gee > equation. > > > > Can you suggest me a reference to write about" missing values and the > > implications for my results" > > > > Thanks. > > > > > > > > On 1/8/13, arun <[hidden > > email]<http://user/SendEmail.jtp?type=node&node=4654996&i=6>> > wrote: > >> HI, > >> > >> Just to add: > >> > fit3<-geese(hibp~MaternalAge*time,id=CODEA,data=BP.stack5,family=binomial,corstr="exch",scale.fix=TRUE) > > >> #works > >> summary(fit3)$mean["p"] > >> # p > >> #(Intercept) 0.00000000 > >> #MaternalAge4 0.49099242 > >> #MaternalAge5 0.04686295 > >> #time21 0.86164351 > >> #MaternalAge4:time21 0.59258221 > >> #MaternalAge5:time21 0.79909832 > >> > >> > fit4<-geese(hibp~MaternalAge*time,id=CODEA,data=BP.stack5,family=binomial,corstr="unstructured",scale.fix=TRUE) > > >> #when the correlation structure is changed to "unstructured" > >> #Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : > >> # contrasts can be applied only to factors with 2 or more levels > >> #In addition: Warning message: > >> #In is.na(rows) : is.na() applied to non-(list or vector) of type > 'NULL' > >> > >> > >> Though, it works with data(Ohio) > >> > >> > fit1<-geese(resp~age+smoke+age:smoke,id=id,data=ohio1,family=binomial,corstr="unstructured",scale.fix=TRUE) > > >> summary(fit1)$mean["p"] > >> # p > >> #(Intercept) 0.00000000 > >> #age-1 0.60555454 > >> #age0 0.45322698 > >> #age1 0.01187725 > >> #smoke1 0.86262269 > >> #age-1:smoke1 0.17239050 > >> #age0:smoke1 0.32223942 > >> #age1:smoke1 0.36686706 > >> > >> > >> > >> By checking: > >> with(BP.stack5,table(MaternalAge,time)) > >> # time > >> #MaternalAge 14 21 > >> # 3 1104 864 > >> # 4 875 667 > >> # 5 67 53 #less number of observations > >> > >> > >> BP.stack6 <- BP.stack5[order(BP.stack5$CODEA, BP.stack5$time),] > >> head(BP.stack6) # very few IDs with MaternalAge==5 > >> # X CODEA Sex MaternalAge Education Birthplace AggScore IntScore > >> #1493 3.1 3 2 3 3 1 0 0 > >> #3202 3.2 3 2 3 3 1 0 0 > >> #1306 7.1 7 2 4 6 1 0 0 > >> #3064 7.2 7 2 4 6 1 0 0 > >> #1 8.1 8 2 4 4 1 0 0 > >> #2047 8.2 8 2 4 4 1 0 0 > >> # Categ time Obese Overweight hibp > >> #1493 Overweight 14 0 0 0 > >> #3202 Overweight 21 0 1 0 > >> #1306 Obese 14 0 0 0 > >> #3064 Obese 21 1 1 0 > >> #1 Normal 14 0 0 0 > >> #2047 Normal 21 0 0 0 > >> BP.stack7<-BP.stack6[BP.stack6$MaternalAge!=5,] > >> > >> > BP.stack7$MaternalAge<-factor(as.numeric(as.character(BP.stack7$MaternalAge) > > >> > >> > fit5<-geese(hibp~MaternalAge*time,id=CODEA,data=BP.stack7,family=binomial,corstr="unstructured",scale.fix=TRUE) > > >> #Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : > >> # contrasts can be applied only to factors with 2 or more levels > >> > >> with(BP.stack7,table(MaternalAge,time)) #It looks like the > combinations > >> are still there > >> # time > >> #MaternalAge 14 21 > >> # 3 1104 864 > >> # 4 875 667 > >> > >> It works also with corstr="ar1". Why do you gave the option > >> "unstructured"? > >> A.K. > >> > >> > >> > >> > >> > >> > >> ----- Original Message ----- > >> From: rex2013 <[hidden > >> email]<http://user/SendEmail.jtp?type=node&node=4654996&i=7>> > > >> To: [hidden email]<http://user/SendEmail.jtp?type=node&node=4654996&i=8> > >> Cc: > >> Sent: Monday, January 7, 2013 6:15 AM > >> Subject: Re: [R] random effects model > >> > >> Hi A.K > >> > >> Below is the comment I get, not sure why. > >> > >> BP.sub3 is the stacked data without the missing values. > >> > >> BP.geese3 <- geese(HiBP~time*MaternalAge,data=BP.sub3,id=CODEA, > >> family=binomial, corstr="unstructured", na.action=na.omit)Error in > >> `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) : > >> contrasts can be applied only to factors with 2 or more levels > >> > >> Even though age has 3 levels; time has 14 years & 21 years; HIBP is a > >> binary response outcome. > >> > >> 2) When you mentioned summary(m1)$mean["p"] what did the p mean? i > >> used this in one of the gee command, it produced NA as answer? > >> > >> Many thanks > >> > >> > >> > >> On Mon, Jan 7, 2013 at 5:26 AM, arun kirshna [via R] < > >> [hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=9>> > wrote: > >> > >>> Hi, > >>> > >>> I am not very familiar with the geese/geeglm(). Is it from > >>> library(geepack)? > >>> Regarding your question: > >>> " > >>> Can you tell me if I can use the geese or geeglm function with this > data > >>> eg: : HIBP~ time* Age > >>> Here age is a factor with 3 levels, time: 2 levels, HIBP = yes/no. > >>> > >>> From your original data: > >>> BP_2b<-read.csv("BP_2b.csv",sep="\t") > >>> head(BP_2b,2) > >>> # CODEA Sex MaternalAge Education Birthplace AggScore IntScore > Obese14 > >>> #1 1 NA 3 4 1 NA NA > NA > >>> #2 3 2 3 3 1 0 0 > 0 > >>> # Overweight14 Overweight21 Obese21 hibp14 hibp21 > >>> #1 NA NA NA NA NA > >>> #2 0 1 0 0 0 > >>> > >>> If I understand your new classification: > >>> BP.stacknormal<- subset(BP_2b,Obese14==0 & Overweight14==0 & > Obese21==0 > >>> & > >>> Overweight21==0) > >>> BP.stackObese <- subset(BP_2b,(Obese14==1& Overweight14==0 & > >>> Obese14==1&Overweight14==1)|(Obese14==1&Overweight14==1 & Obese21==1 & > >>> Overweight21==0)|(Obese14==1&Overweight14==0 & Obese21==0 & > >>> Overweight21==0)|(Obese14==0 & Overweight14==0 & Obese21==1 & > >>> Overweight21==0)|(Obese14==0 & Overweight14==0 & Obese21==1 & > >>> Overweight21==1)|(Obese14==0 & Overweight14==1 & Obese21==1 > >>> &Overweight21==1)|(Obese14==1& Overweight14==1 & Obese21==1& > >>> Overweight21==1)) #check whether there are more classification that > fits > >>> to > >>> #Obese > >>> BP.stackOverweight <- subset(BP_2b,(Obese14==0 & Overweight14==1 & > >>> Obese21==0 & Overweight21==1)|(Obese14==0 &Overweight14==1 & > Obese21==0 > >>> & > >>> Overweight21==0)|(Obese14==0 & Overweight14==0 & Obese21==0 & > >>> Overweight21==1)) > >>> BP.stacknormal$Categ<-"Normal" > >>> BP.stackObese$Categ<-"Obese" > >>> BP.stackOverweight$Categ <- "Overweight" > >>> > >>> > BP.newObeseOverweightNormal<-na.omit(rbind(BP.stacknormal,BP.stackObese,BP.stackOverweight)) > > >>> > >>> nrow(BP.newObeseOverweightNormal) > >>> #[1] 1581 > >>> BP.stack3 <- > >>> > reshape(BP.newObeseOverweightNormal,idvar="CODEA",timevar="time",sep="_",varying=list(c("Obese14","Obese21"),c("Overweight14","Overweight21"),c("hibp14","hibp21")),v.names=c("Obese","Overweight","hibp"),direction="long") > > >>> > >>> library(car) > >>> BP.stack3$time<-recode(BP.stack3$time,"1=14;2=21") > >>> head(BP.stack3,2) > >>> # CODEA Sex MaternalAge Education Birthplace AggScore IntScore > Categ > >>> time > >>> #8.1 8 2 4 4 1 0 0 > Normal > >>> 14 > >>> #9.1 9 1 3 6 2 0 0 > Normal > >>> 14 > >>> # Obese Overweight hibp > >>> #8.1 0 0 0 > >>> > >>> Now, your formula: (HIBP~time*Age), is it MaternalAge? > >>> If it is, it has three values > >>> unique(BP.stack3$MaternalAge) > >>> #[1] 4 3 5 > >>> and for time (14,21) # If it says that geese/geeglm, contrasts could > be > >>> applied with factors>=2 levels, what is the problem? > >>> If you take "Categ" variable, it also has 3 levels (Normal, Obese, > >>> Overweight). > >>> > >>> BP.stack3$MaternalAge<-factor(BP.stack3$MaternalAge) > >>> BP.stack3$time<-factor(BP.stack3$time) > >>> > >>> library(geepack) > >>> For your last question about how to get the p-values: > >>> # Using one of the example datasets: > >>> data(seizure) > >>> seiz.l <- reshape(seizure, > >>> varying=list(c("base","y1", "y2", "y3", "y4")), > >>> v.names="y", times=0:4, direction="long") > >>> seiz.l <- seiz.l[order(seiz.l$id, seiz.l$time),] > >>> seiz.l$t <- ifelse(seiz.l$time == 0, 8, 2) > >>> seiz.l$x <- ifelse(seiz.l$time == 0, 0, 1) > >>> m1 <- geese(y ~ offset(log(t)) + x + trt + x:trt, id = id, > >>> data=seiz.l, corstr="exch", family=poisson) > >>> summary(m1) > >>> > >>> summary(m1)$mean["p"] > >>> # p > >>> #(Intercept) 0.0000000 > >>> #x 0.3347040 > >>> #trt 0.9011982 > >>> #x:trt 0.6236769 > >>> > >>> > >>> #If you need the p-values of the scale > >>> summary(m1)$scale["p"] > >>> # p > >>> #(Intercept) 0.0254634 > >>> > >>> Hope it helps. > >>> > >>> A.K. > >>> > >>> > >>> > >>> > >>> > >>> > >>> ----- Original Message ----- > >>> From: rex2013 <[hidden > >>> email]<http://user/SendEmail.jtp?type=node&node=4654795&i=0>> > >>> > >>> To: [hidden email] > >>> <http://user/SendEmail.jtp?type=node&node=4654795&i=1> > >>> Cc: > >>> Sent: Sunday, January 6, 2013 4:55 AM > >>> Subject: Re: [R] random effects model > >>> > >>> Hi A.K > >>> > >>> Regarding my question on comparing normal/ obese/overweight with blood > >>> pressure change, I did finally as per the first suggestion of stacking > >>> the > >>> data and creating a normal category . This only gives me a obese not > >>> obese > >>> 14, but when I did with the wide format hoping to get a > >>> obese14,normal14,overweight 14 Vs hibp 21, i could not complete any of > >>> the > >>> models. > >>> This time I classified obese=1 & overweight=1 as obese itself. > >>> > >>> Can you tell me if I can use the geese or geeglm function with this > data > >>> eg: : HIBP~ time* Age > >>> Here age is a factor with 3 levels, time: 2 levels, HIBP = yes/no. > >>> > >>> It says geese/geeglm: contrast can be applied only with factor with 2 > or > >>> more levels. What is the way to overcome this. Can I manipulate the > data > >>> to > >>> make it work. > >>> > >>> I need to know if the demogrphic variables affect change in blood > >>> pressure > >>> status over time? > >>> > >>> How to get the p values with gee model? > >>> > >>> Thanks > >>> On Thu, Jan 3, 2013 at 5:06 AM, arun kirshna [via R] < > >>> [hidden email] <http://user/SendEmail.jtp?type=node&node=4654795&i=2>> > > >>> wrote: > >>> > >>> > HI Rex, > >>> > If I take a small subset from your whole dataset, and go through > your > >>> > codes: > >>> > BP_2b<-read.csv("BP_2b.csv",sep="\t") > >>> > BP.sub<-BP_2b[410:418,c(1,8:11,13)] #deleted the columns that are > not > >>> > needed > >>> > BP.stacknormal<- subset(BP.subnew,Obese14==0 & Overweight14==0) > >>> > BP.stackObese <- subset(BP.subnew,Obese14==1) > >>> > BP.stackOverweight <- subset(BP.subnew,Overweight14==1) > >>> > BP.stacknormal$Categ<-"Normal14" > >>> > BP.stackObese$Categ<-"Obese14" > >>> > BP.stackOverweight$Categ <- "Overweight14" > >>> > > >>> > BP.newObeseOverweightNormal<-rbind(BP.stacknormal,BP.stackObese,BP.stackOverweight) > > >>> > >>> > > >>> > BP.newObeseOverweightNormal > >>> > # CODEA Obese14 Overweight14 Overweight21 Obese21 hibp21 > >>> > Categ > >>> > #411 541 0 0 0 0 0 > >>> > Normal14 > >>> > #415 545 0 0 1 1 1 > >>> > Normal14 > >>> > #418 549 0 0 1 0 0 > >>> > Normal14 > >>> > #413 543 1 0 1 1 0 > >>> > Obese14 > >>> > #417 548 0 1 1 0 0 > >>> > Overweight14 > >>> > BP.newObeseOverweightNormal$Categ<- > >>> > factor(BP.newObeseOverweightNormal$Categ) > >>> > BP.stack3 <- > >>> > > >>> > reshape(BP.newObeseOverweightNormal,idvar="CODEA",timevar="time",sep="_",varying=list(c("Obese14","Obese21"),c("Overweight14","Overweight21")),v.names=c("Obese","Overweight"),direction="long") > > >>> > >>> > > >>> > library(car) > >>> > BP.stack3$time<-recode(BP.stack3$time,"1=14;2=21") > >>> > BP.stack3 #Here Normal14 gets repeated even at time==21. Given that > >>> > you > >>> > are using the "Categ" and "time" #columns in the analysis, it will > >>> > give > >>> > incorrect results. > >>> > # CODEA hibp21 Categ time Obese Overweight > >>> > #541.1 541 0 Normal14 14 0 0 > >>> > #545.1 545 1 Normal14 14 0 0 > >>> > #549.1 549 0 Normal14 14 0 0 > >>> > #543.1 543 0 Obese14 14 1 0 > >>> > #548.1 548 0 Overweight14 14 0 1 > >>> > #541.2 541 0 Normal14 21 0 0 > >>> > #545.2 545 1 Normal14 21 1 1 > >>> > #549.2 549 0 Normal14 21 0 1 > >>> > #543.2 543 0 Obese14 21 1 1 > >>> > #548.2 548 0 Overweight14 21 0 1 > >>> > #Even if I correct the above codes, this will give incorrect > >>> > results/(error as you shown) because the response variable (hibp21) > >>> > gets > >>> > #repeated when you reshape it from wide to long. > >>> > > >>> > The correct classification might be: > >>> > BP_2b<-read.csv("BP_2b.csv",sep="\t") > >>> > BP.sub<-BP_2b[410:418,c(1,8:11,13)] > >>> > > >>> > BP.subnew<-reshape(BP.sub,idvar="CODEA",timevar="time",sep="",varying=list(c("Obese14","Obese21"),c("Overweight14","Overweight21")),v.names=c("Obese","Overweight"),direction="long") > > >>> > >>> > > >>> > BP.subnew$time<-recode(BP.subnew$time,"1=14;2=21") > >>> > BP.subnew<-na.omit(BP.subnew) > >>> > > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==14 & > >>> > BP.subnew$Obese==0]<-"Overweight14" > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==21 & > >>> > BP.subnew$Obese==0]<-"Overweight21" > >>> > BP.subnew$Categ[BP.subnew$Obese==1 & BP.subnew$time==14 & > >>> > BP.subnew$Overweight==0]<-"Obese14" > >>> > BP.subnew$Categ[BP.subnew$Obese==1 & BP.subnew$time==21 & > >>> > BP.subnew$Overweight==0]<-"Obese21" > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==21& > >>> > BP.subnew$Obese==1]<-"ObeseOverweight21" > >>> > BP.subnew$Categ[BP.subnew$Overweight==1 & BP.subnew$time==14& > >>> > BP.subnew$Obese==1]<-"ObeseOverweight14" > >>> > BP.subnew$Categ[BP.subnew$Overweight==0 & BP.subnew$Obese==0 > >>> > &BP.subnew$time==14]<-"Normal14" > >>> > BP.subnew$Categ[BP.subnew$Overweight==0 & BP.subnew$Obese==0 > >>> > &BP.subnew$time==21]<-"Normal21" > >>> > > >>> > BP.subnew$Categ<-factor(BP.subnew$Categ) > >>> > BP.subnew$time<-factor(BP.subnew$time) > >>> > BP.subnew > >>> > # CODEA hibp21 time Obese Overweight Categ > >>> > #541.1 541 0 14 0 0 Normal14 > >>> > #543.1 543 0 14 1 0 Obese14 > >>> > #545.1 545 1 14 0 0 Normal14 > >>> > #548.1 548 0 14 0 1 Overweight14 > >>> > #549.1 549 0 14 0 0 Normal14 > >>> > #541.2 541 0 21 0 0 Normal21 > >>> > #543.2 543 0 21 1 1 ObeseOverweight21 > >>> > #545.2 545 1 21 1 1 ObeseOverweight21 > >>> > #548.2 548 0 21 0 1 Overweight21 > >>> > #549.2 549 0 21 0 1 Overweight21 > >>> > > >>> > #NOw with the whole dataset: > >>> > BP.sub<-BP_2b[,c(1,8:11,13)] #change here and paste the above lines: > >>> > head(BP.subnew) > >>> > # CODEA hibp21 time Obese Overweight Categ > >>> > #3.1 3 0 14 0 0 Normal14 > >>> > #7.1 7 0 14 0 0 Normal14 > >>> > #8.1 8 0 14 0 0 Normal14 > >>> > #9.1 9 0 14 0 0 Normal14 > >>> > #14.1 14 1 14 0 0 Normal14 > >>> > #21.1 21 0 14 0 0 Normal14 > >>> > > >>> > tail(BP.subnew) > >>> > # CODEA hibp21 time Obese Overweight Categ > >>> > #8485.2 8485 0 21 1 1 ObeseOverweight21 > >>> > #8506.2 8506 0 21 0 1 Overweight21 > >>> > #8520.2 8520 0 21 0 0 Normal21 > >>> > #8529.2 8529 1 21 1 1 ObeseOverweight21 > >>> > #8550.2 8550 0 21 1 1 ObeseOverweight21 > >>> > #8554.2 8554 0 21 0 0 Normal21 > >>> > > >>> > summary(lme.1 <- lme(hibp21~time+Categ+ time*Categ, > >>> > data=BP.subnew,random=~1|CODEA, na.action=na.omit)) > >>> > #Error in MEEM(object, conLin, control$niterEM) : > >>> > #Singularity in backsolve at level 0, block 1 > >>> > #May be because of the reasons I mentioned above. > >>> > > >>> > #YOu didn't mention the library(gee) > >>> > BP.gee8 <- gee(hibp21~time+Categ+time*Categ, > >>> > data=BP.subnew,id=CODEA,family=binomial, > >>> > corstr="exchangeable",na.action=na.omit) > >>> > #Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27 > >>> > #Error in gee(hibp21 ~ time + Categ + time * Categ, data = > BP.subnew, > >>> > id > >>> = > >>> > CODEA, : > >>> > #rank-deficient model matrix > >>> > With your codes, it might have worked, but the results may be > >>> > inaccurate > >>> > # After running your whole codes: > >>> > BP.gee8 <- gee(hibp21~time+Categ+time*Categ, > >>> > data=BP.stack3,id=CODEA,family=binomial, > >>> > corstr="exchangeable",na.action=na.omit) > >>> > #Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27 > >>> > #running glm to get initial regression estimate > >>> > # (Intercept) time > CategObese14 > >>> > # -2.456607e+01 9.940875e-15 > 2.087584e-13 > >>> > # CategOverweight14 time:CategObese14 > time:CategOverweight14 > >>> > # 2.087584e-13 -9.940875e-15 > -9.940875e-15 > >>> > #Error in gee(hibp21 ~ time + Categ + time * Categ, data = > BP.stack3, > >>> > id > >>> = > >>> > CODEA, : > >>> > # Cgee: error: logistic model for probability has fitted value very > >>> close > >>> > to 1. > >>> > #estimates diverging; iteration terminated. > >>> > > >>> > In short, I think it would be better to go with the suggestion in my > >>> > previous email with adequate changes in "Categ" variable (adding > >>> > ObeseOverweight14, ObeseOverweight21 etc) as I showed here. > >>> > > >>> > A.K. > >>> > > >>> > > >>> > > >>> > > >>> > > >>> > > >>> > > >>> > > >>> > ------------------------------ > >>> > If you reply to this email, your message will be added to the > >>> discussion > >>> > below: > >>> > > >>> > >>> > . > >>> > NAML< > >>> > http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml> > > >>> > >>> > > >>> > >>> > >>> > >>> > >>> -- > >>> View this message in context: > >>> > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654776.html > >>> Sent from the R help mailing list archive at Nabble.com. > >>> [[alternative HTML version deleted]] > >>> > >>> ______________________________________________ > >>> [hidden email] > >>> <http://user/SendEmail.jtp?type=node&node=4654795&i=3>mailing list > >>> https://stat.ethz.ch/mailman/listinfo/r-help > >>> PLEASE do read the posting guide > >>> http://www.R-project.org/posting-guide.html > >>> and provide commented, minimal, self-contained, reproducible code. > >>> > >>> > >>> ______________________________________________ > >>> [hidden email] > >>> <http://user/SendEmail.jtp?type=node&node=4654795&i=4>mailing list > >>> https://stat.ethz.ch/mailman/listinfo/r-help > >>> PLEASE do read the posting guide > >>> http://www.R-project.org/posting-guide.html > >>> and provide commented, minimal, self-contained, reproducible code. > >>> > >>> > >>> ------------------------------ > >>> If you reply to this email, your message will be added to the > >>> discussion > >>> below: > >>> > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654795.html > >>> To unsubscribe from random effects model, click > >>> here< > > >>> . > >>> NAML< > http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml> > > >>> > >> > >> > >> > >> > >> -- > >> View this message in context: > >> > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654826.html > >> Sent from the R help mailing list archive at Nabble.com. > >> [[alternative HTML version deleted]] > >> > >> ______________________________________________ > >> [hidden email] > >> <http://user/SendEmail.jtp?type=node&node=4654996&i=10>mailing list > >> https://stat.ethz.ch/mailman/listinfo/r-help > >> PLEASE do read the posting guide > >> http://www.R-project.org/posting-guide.html > >> and provide commented, minimal, self-contained, reproducible code. > >> > >> > > > > > > ______________________________________________ > > [hidden email] > > <http://user/SendEmail.jtp?type=node&node=4654996&i=11>mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > > > > > > > _______________________________________________ > > If you reply to this email, your message will be added to the discussion > > below: > > > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654902.html > > > > To unsubscribe from random effects model, visit > > > > View this message in context: > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654986.html > > Sent from the R help mailing list archive at Nabble.com. > [[alternative HTML version deleted]] > > ______________________________________________ > [hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=12>mailing > list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > > ______________________________________________ > [hidden email] <http://user/SendEmail.jtp?type=node&node=4654996&i=13>mailing > list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > > ------------------------------ > If you reply to this email, your message will be added to the discussion > below: > http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4654996.html > To unsubscribe from random effects model, click > here<http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=unsubscribe_by_code&node=4654346&code=dXNoYS5uYXRoYW5AZ21haWwuY29tfDQ2NTQzNDZ8MjAyMjE1NDI0> > . > NAML<http://r.789695.n4.nabble.com/template/NamlServlet.jtp?macro=macro_viewer&id=instant_html%21nabble%3Aemail.naml&base=nabble.naml.namespaces.BasicNamespace-nabble.view.web.template.NabbleNamespace-nabble.view.web.template.NodeNamespace&breadcrumbs=notify_subscribers%21nabble%3Aemail.naml-instant_emails%21nabble%3Aemail.naml-send_instant_email%21nabble%3Aemail.naml> > -- View this message in context: http://r.789695.n4.nabble.com/random-effects-model-tp4654346p4655206.html Sent from the R help mailing list archive at Nabble.com. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.