Greetings to you all,

I am performing a semi parametric bootstrap in R on a Gamma Distributed data and a Binomial distributed data. The main challenge am facing is the fact that the residual variance depends on the mean (if I am correct). I strongly feel that the script below may be wrong due to mean-variance relationship

#####R code#######
fit1s <-glm(mydata$vzv~mydata$age.c+mydata$age2+mydata$sex1, family=Gamma(link=log))
x.betahat1<-fit1s$fitted.values
res1<-fit1s$residuals
b<-1000
for (i in 1:b){
    b.i <- sample(index, size=n, replace=T)
    res.star1=res1[b.i]

    bst1=x.betahat1+res.star1
    mydata1 <-data.frame(age,age2,sex,bst1)
    ########Modeling ################
    fit11 <-glm(bst1~age+age2+sex, family=Gamma(link=log),data=mydata1)
    }

Can someone help me correct this code? Kindly advice on Binomial data as well

Happy New year2013!
-- _______________________________
Paul K. Musingila

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to