I am attempting to use optim to solve a neural network problem. I would like to optimize coefficients that are currently stored in a matrix
Y=270 x 1 X= 27- x 14 b1= 10x14 b2= 11x1 V= 10 x 14 set of prior variances. I have the following function: posterior.mode1=function(y,X,b_0,b2,V) { log.like=function(b1) { a_g=compute(b1) z_g=tanh(a_g); z_g=cbind(1,z_g) p=softmax(z_g%*%b2); a=sum(y*log(p)+(1-y)*log(1-p)); return(a); } compute=function(b1) { a_g=NULL; for(i in 1:nrow(b1)){ a_g=cbind(a_g,X%*%b1[i,]) } return(a_g); } log.posterior=function(b1) { -log.like(b1)+1/2*t(as.vector(b1))%*%diag(as.vector(V))%*%as.vector(b1) } a=optim(b_0,log.posterior,method="CG",hessian=TRUE) return(a); } When I run posterior.mode1(y,X,b1,b2,b1) I get the following error Error in 1:nrow(b1) : argument of length 0 Any comments would be very helpful Thanks [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.