As the posting guide asked, please ask the package maintainer directly
(Cc:ed here).
On 12/12/2012 19:34, Aspro wrote:
Hi,
I'm currently using EMA package to make clustering and heatmaps.
The online doc concerning the package gives the following example code:
data(marty)
c<-clustering(marty, metric="pearson", method="ward")
clustering.plot(c, title="Hierarchical Clustering\nPearson-Ward")
which is working perfectly,
However, when I'm changing the method to method="kcentroids", on the exact
same example, I got the following error:
Error in DIS$DIS : $ operator is invalid for atomic vectors
Here is the code ran :
data(marty)
c<-clustering(marty, metric="pearson", method="kcentroids", 4)
clustering.plot(c, title="Hierarchical Clustering\nPearson-Ward")
I even tried to transform the data to a dataframe with the following code :
data(marty)
c<-clustering(data.frame(marty), metric="pearson", method="kcentroids", 4)
clustering.plot(c, title="Hierarchical Clustering\nPearson-Ward")
but it's not working either...
Someone know how I can correct this issue? Or should I use classical
hclust() function instead of clustering() ?
Thanks
--
View this message in context:
http://r.789695.n4.nabble.com/EMA-Package-tp4652918.html
Sent from the R help mailing list archive at Nabble.com.
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
--
Brian D. Ripley, rip...@stats.ox.ac.uk
Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/
University of Oxford, Tel: +44 1865 272861 (self)
1 South Parks Road, +44 1865 272866 (PA)
Oxford OX1 3TG, UK Fax: +44 1865 272595
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.