On 07-12-2012, at 18:12, Spencer Graves wrote: > Has anyone suggested using the byte code compiler "compiler" package? > An analysis by John Nash suggested to me that it may be roughly equivalent to > vectorization; see > "http://rwiki.sciviews.org/doku.php?id=tips:rqcasestudy&s=compiler". > >
Not yet. But here are some results for alternative ways of doing what the OP wanted. # Initial parameters N <- 1000 B <- c(0,1) sem1 <- runif(N, 1, 2) x <- rnorm(N) X <- cbind(1, x) # load compiler package library(compiler) # functions # Original loop solution with function fun defined outside loop f1 <- function(X, B, x, sem1) { eta <- numeric(nrow(X)) fun <- function(u, m, s) 1/ (1 + exp(- (B[1] + B[2] * (m + u)))) * dnorm(u, 0, s) for(j in 1:nrow(X)){ eta[j] <- integrate(fun, -Inf, Inf, m=x[j], s=sem1[j])$value } eta } f2 <- cmpfun(f1) # sapply solution with fun defined outside function fun <- function(u, m, s) 1/ (1 + exp(- (B[1] + B[2] * (m + u)))) * dnorm(u, 0, s) f3 <- function(X, B, x, sem1) sapply(1:nrow(X), function(i) integrate(fun, -Inf, Inf, m=x[i], s=sem1[i])$value) f4 <- cmpfun(f3) # sapply solution with fun defined within function f5 <- function(X, B, x, sem1) { fun <- function(u, m, s) 1/ (1 + exp(- (B[1] + B[2] * (m + u)))) * dnorm(u, 0, s) sapply(1:nrow(X), function(i) integrate(fun, -Inf, Inf, m=x[i], s=sem1[i])$value) } f6 <- cmpfun(f5) # Testing eta1 <- f1(X, B, x, sem1) eta2 <- f2(X, B, x, sem1) eta3 <- f3(X, B, x, sem1) eta4 <- f4(X, B, x, sem1) eta5 <- f5(X, B, x, sem1) eta6 <- f6(X, B, x, sem1) identical(eta1,eta2) identical(eta1,eta3) identical(eta1,eta4) identical(eta1,eta5) library(rbenchmark) benchmark(eta1 <- f1(X, B, x, sem1), eta2 <- f2(X, B, x, sem1), eta3 <- f3(X, B, x, sem1), eta4 <- f4(X, B, x, sem1), eta5 <- f5(X, B, x, sem1), eta6 <- f6(X, B, x, sem1), replications=10, columns=c("test","elapsed","relative")) # Results > identical(eta1,eta2) [1] TRUE > identical(eta1,eta3) [1] TRUE > identical(eta1,eta4) [1] TRUE > identical(eta1,eta5) [1] TRUE > > library(rbenchmark) > > benchmark(eta1 <- f1(X, B, x, sem1), eta2 <- f2(X, B, x, sem1), eta3 <- f3(X, > B, x, sem1), + eta4 <- f4(X, B, x, sem1), eta5 <- f5(X, B, x, sem1), eta6 <- f6(X, B, x, sem1), + replications=10, columns=c("test","elapsed","relative")) test elapsed relative 1 eta1 <- f1(X, B, x, sem1) 1.873 1.207 2 eta2 <- f2(X, B, x, sem1) 1.552 1.000 3 eta3 <- f3(X, B, x, sem1) 1.807 1.164 4 eta4 <- f4(X, B, x, sem1) 1.841 1.186 5 eta5 <- f5(X, B, x, sem1) 1.852 1.193 6 eta6 <- f6(X, B, x, sem1) 1.601 1.032 As you can see using the compiler package is beneficial speedwise. f2 and f6, both the the result of using the compiler package, are the quickest. It's quite likely that more can be eked out of this. Berend ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.