Hello,

Try the following function.

ci_lm <- function(object, level = 0.95){
     summfit <- summary(object)
     beta <- summfit$coefficients[, 1]
     se <- summfit$coefficients[, 2]
     df <- summfit$df[1]
     alpha <- 1 - level
     lower <- beta + qt(alpha/2, df = df)*se
     upper <- beta + qt(1 - alpha/2, df = df)*se
     data.frame(beta, lower, upper)
}

Hope this helps,

Rui Barradas
Em 29-11-2012 00:07, Torvon escreveu:
I would like to obtain Confidence Intervals for the estimates
(unstandardized beta weights) of each predictor in a WLS regression:

m1 = lm(x~ x1+x2+x3, weights=W, data=D)

SPSS offers that output by default, and I am not able to find a way to do
this in R. I read through predict.lm, but I do not find a way to get the
CIs for multiple independent variables.

Thank you
Torvon

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to