Hello, Try the following function.
ci_lm <- function(object, level = 0.95){ summfit <- summary(object) beta <- summfit$coefficients[, 1] se <- summfit$coefficients[, 2] df <- summfit$df[1] alpha <- 1 - level lower <- beta + qt(alpha/2, df = df)*se upper <- beta + qt(1 - alpha/2, df = df)*se data.frame(beta, lower, upper) } Hope this helps, Rui Barradas Em 29-11-2012 00:07, Torvon escreveu:
I would like to obtain Confidence Intervals for the estimates (unstandardized beta weights) of each predictor in a WLS regression: m1 = lm(x~ x1+x2+x3, weights=W, data=D) SPSS offers that output by default, and I am not able to find a way to do this in R. I read through predict.lm, but I do not find a way to get the CIs for multiple independent variables. Thank you Torvon [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.