An interesting approach -- I lose the column names (which I need) but I could get them with something cute such as: 1. read the first few lines only with readLines(FILENAME, n=10) 2. use your approach to read.table -- this will grab the column names 3. replace the headers in the full version with the correct column names
Dennis Fisher MD P < (The "P Less Than" Company) Phone: 1-866-PLessThan (1-866-753-7784) Fax: 1-866-PLessThan (1-866-753-7784) www.PLessThan.com On Nov 28, 2012, at 11:32 AM, David L Carlson wrote: > Using your first approach, this should be faster > > raw <- readLines(con=filename) > dta <- read.table(text=raw[!grepl("[A:DF:Z]" ,raw)], header=FALSE) > > ---------------------------------------------- > David L Carlson > Associate Professor of Anthropology > Texas A&M University > College Station, TX 77843-4352 > >> -----Original Message----- >> From: r-help-boun...@r-project.org [mailto:r-help-bounces@r- >> project.org] On Behalf Of Fisher Dennis >> Sent: Wednesday, November 28, 2012 11:43 AM >> To: r-help@r-project.org >> Subject: [R] Speeding reading of large file >> >> R 2.15.1 >> OS X and Windows >> >> Colleagues, >> >> I have a file that looks that this: >> TABLE NO. 1 >> PTID TIME AMT FORM PERIOD IPRED >> CWRES EVID CP PRED RES WRES >> 2.0010E+03 3.9375E-01 5.0000E+03 2.0000E+00 0.0000E+00 >> 0.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 >> 0.0000E+00 >> 2.0010E+03 8.9583E-01 5.0000E+03 2.0000E+00 0.0000E+00 >> 3.3389E+00 0.0000E+00 1.0000E+00 0.0000E+00 3.5321E+00 0.0000E+00 >> 0.0000E+00 >> 2.0010E+03 1.4583E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 5.8164E+00 0.0000E+00 1.0000E+00 0.0000E+00 5.9300E+00 0.0000E+00 >> 0.0000E+00 >> 2.0010E+03 1.9167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 8.3633E+00 0.0000E+00 1.0000E+00 0.0000E+00 8.7011E+00 0.0000E+00 >> 0.0000E+00 >> 2.0010E+03 2.4167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.0092E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.0324E+01 0.0000E+00 >> 0.0000E+00 >> 2.0010E+03 2.9375E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.1490E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.1688E+01 0.0000E+00 >> 0.0000E+00 >> 2.0010E+03 3.4167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.2940E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.3236E+01 0.0000E+00 >> 0.0000E+00 >> 2.0010E+03 4.4583E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.1267E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.1324E+01 0.0000E+00 >> 0.0000E+00 >> >> The file is reasonably large (> 10^6 lines) and the two line header is >> repeated periodically in the file. >> I need to read this file in as a data frame. Note that the number of >> columns, the column headers, and the number of replicates of the >> headers are not known in advance. >> >> I have tried two approaches to this: >> First Approach: >> 1. readLines(FILENAME) to read in the file >> 2. use grep to find the repeat headers; strip out the >> repeat headers >> 3. write() the object to tempfile, read in that temporary >> file using read.table(tempfile, header=TRUE, skip=1) [an alternative is >> to use textConnection but that does not appear to speed things] >> >> Second Approach: >> 1. TEMP <- read.table(FILENAME, header=TRUE, skip=1, >> fill=TRUE, as.is=TRUE) >> 2. get rid of the errant entries with: >> TEMP[!is.na(as.numeric(TEMP[,1])),] >> 3. reading of the character entries forced all columns to >> character mode. Therefore, I convert each column to numeric: >> for (COL in 1:ncol(TEMP)) TEMP[,COL] <- >> as.numeric(TEMP[,COL]) >> The second approach is ~ 20% faster than the first. With the second >> approach, the conversion to numeric occupies 50% of the elapsed time. >> >> Is there some approach that would be much faster? For example, would a >> vectorized approach to conversion to numeric improve throughput? Or, >> is there some means to ensure that all data are read as numeric (I >> tried to use colClasses but that triggered an error when the text >> string was encountered). >> >> ############################ >> A dput version of the data is: >> c("TABLE NO. 1", " PTID TIME AMT FORM >> PERIOD IPRED CWRES EVID CP PRED >> RES WRES", >> " 2.0010E+03 3.9375E-01 5.0000E+03 2.0000E+00 0.0000E+00 >> 0.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 8.9583E-01 5.0000E+03 2.0000E+00 0.0000E+00 >> 3.3389E+00 0.0000E+00 1.0000E+00 0.0000E+00 3.5321E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 1.4583E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 5.8164E+00 0.0000E+00 1.0000E+00 0.0000E+00 5.9300E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 1.9167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 8.3633E+00 0.0000E+00 1.0000E+00 0.0000E+00 8.7011E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 2.4167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.0092E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.0324E+01 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 2.9375E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.1490E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.1688E+01 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 3.4167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.2940E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.3236E+01 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 4.4583E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.1267E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.1324E+01 0.0000E+00 >> 0.0000E+00" >> ) >> >> This can be assembled into a large dataset and written to a file named >> FILENAME with the following code: >> cat(c("TABLE NO. 1", " PTID TIME AMT FORM >> PERIOD IPRED CWRES EVID CP PRED >> RES WRES", >> " 2.0010E+03 3.9375E-01 5.0000E+03 2.0000E+00 0.0000E+00 >> 0.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 8.9583E-01 5.0000E+03 2.0000E+00 0.0000E+00 >> 3.3389E+00 0.0000E+00 1.0000E+00 0.0000E+00 3.5321E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 1.4583E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 5.8164E+00 0.0000E+00 1.0000E+00 0.0000E+00 5.9300E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 1.9167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 8.3633E+00 0.0000E+00 1.0000E+00 0.0000E+00 8.7011E+00 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 2.4167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.0092E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.0324E+01 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 2.9375E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.1490E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.1688E+01 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 3.4167E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.2940E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.3236E+01 0.0000E+00 >> 0.0000E+00", >> " 2.0010E+03 4.4583E+00 5.0000E+03 2.0000E+00 0.0000E+00 >> 1.1267E+01 0.0000E+00 1.0000E+00 0.0000E+00 1.1324E+01 0.0000E+00 >> 0.0000E+00" >> )[rep(1:10, 1000)], file="FILENAME", sep="\n") >> >> >> Dennis >> >> >> Dennis Fisher MD >> P < (The "P Less Than" Company) >> Phone: 1-866-PLessThan (1-866-753-7784) >> Fax: 1-866-PLessThan (1-866-753-7784) >> www.PLessThan.com >> >> ______________________________________________ >> R-help@r-project.org mailing list >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/posting- >> guide.html >> and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.