Hi all, I've been attempting to fit a logistic glmm using glmmPQL in order to estimate variance components for a score test, where the model is of the form logit(mu) = X*a+ Z1*b1 + Z2*b2. Z1 and Z2 are actually reduced rank square root matrices of the assumed covariance structure (up to a constant) of random effects c1 and c2, respectively, such that b1 ~ N(0,sig.1^2*I) and c1 ~ N(0,sig.1^2*K1) , where K1 = Z1*t(Z1), and c1 = Z1*b1.
The model form I've been using is just the following: m<-glmmPQL(y~1,random=list(f=pdBlocked(list(pdIdnot(~Z.1-1),pdIdnot(~Z.2-1)))) ,family=binomial(link="logit")) I've been extracting the variance components using VarCorr(), but I've noticed that the reported variances associated with my random effects are not even close to the values I get if I evaluate their variances empirically (eg var(random.effects(m.12)). I know that's not how they're actually estimated, but there may be a whole order of magnitude difference in the values. Below is an example under R 2.14 on a linux machine: library(MASS) library(mgcv) library(boot) set.seed(1234) G.1<-matrix(rnorm(5000,0,0.25),nrow=100) G.2<-matrix(rnorm(5000,0,0.25),nrow=100) K.1<-G.1%*%t(G.1) K.2<-G.2%*%t(G.2) Z.1<-mroot(K.1,method="svd") Z.2<-mroot(K.2,method="svd") b.1<-matrix(rnorm(ncol(Z.1),0,0.25),ncol=1) b.2<-matrix(rnorm(ncol(Z.2),0,0.50),ncol=1) p<-inv.logit(Z.1%*%b.1+Z.2%*%b.2) y<-rbinom(100,1,p) f<-rep(1,100) m.fit<-glmmPQL(y~1,random=list(f=pdBlocked(list(pdIdent(~Z.1-1),pdIdent(~Z.2-1)))), family=binomial(link="logit")) VarCorr(m.fit) var(as.numeric(random.effects(m.fit))[1:ncol(Z.1)]) var(as.numeric(random.effects(m.fit))[-c(1:ncol(Z.1))]) >From the above, VarCorr() results in variance component estimates of sig.1^2 = 0.444 and sig.2^2 = 0.2778, whereas the empirical estimates are sig.1^2 = 0.2060 and sig.1^2 = 0.097. I know variance component estimation in general is a little shaky, but my simulations suggest that VarCorr() is extracting values that are way too large on a consistent basis. I'm largely assuming I'm misinterpreting something here, just can't figure out what. -Nick -- View this message in context: http://r.789695.n4.nabble.com/Variance-component-estimation-in-glmmPQL-tp4650964.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.