Dear all, I am using the book "Generalized Linera Models and Extension" by Hardin and Hilbe (second edition, 2007) at the moment. The authors suggest that instead of OLS models, "the log link is generally used for response data that take only positive values on the continuous scale". Of course they also suggest residual plots to check whether a "normal" linera model using an identity link can still be used.
I am trying to replicate in R what they do in the book in STATA. Indeed, I have no problems in STATA with the log link. However, when calling the same model using R's glm-function, but specifying *family=gaussian(link="log") *I am asked to provide starting values. When I set them all equal to zero, I always get the message that the algorithm did not converge. Picking other values the message is sometimes the same, but more often I get: * * *Error in glm.fit(x = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, : * * NA/NaN/Inf in 'x' * * * As I said, in STATA I can run these models without setting starting values and without errors. I tried many different models, and different datasets, but the problem is always the same (unless I only include one single independent variable). Could anyone tell me why this is the case, or what I do wrong, or why the suggested models from the book might not be appropriate? I'd appreciate any help! Best, Florian [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.