Clearly, a family of solutions is (p,q) = (0,k), with k != 0.
Paul On Fri, Apr 25, 2008 at 1:58 PM, Paul Smith <[EMAIL PROTECTED]> wrote: > Try to change the initial values of the parameters with, for instance, > > p0 <- rnorm(2) > > But you sure that your system has a solution, Evgeniq? > > Paul > > > > > 2008/4/25 Radka Pancheva <[EMAIL PROTECTED]>: > > Hello Paul, > > > > Thank you for your quick answer. I have tried to use your advice and to > estimate the parameters of beta distribution with moments matching. This is > my code: > > > > > > ex <- 0.3914877 > > ex2 <- 0.2671597 > > > > my.mm <- function(x){ > > p <- x[1] > > q <- x[2] > > p <- .Machine$double.eps > > q <- .Machine$double.eps > > > > F <- rep(NA,2) > > > > F[1] <- p/(p + q) > > F[2]<- (p*q + (p + q + 1)*p^2)/((p + q + 1)*(p + q)^2) > > > > return(F) > > } > > > > p0 <- c(ex,ex2) > > > > dfsane(par=p0, fn=my.mm,control=list(maxit=50000)) > > > > and I became the following output: > > > > … > > iteration: 3640 ||F(xn)|| = 0.7071068 > > iteration: 3641 ||F(xn)|| = 0. 7071068 > > … > > iteration: 49990 ||F(xn)|| = 0. 7071068 > > iteration: 50000 ||F(xn)|| = 0. 7071068 > > $par > > [1] -446.2791 -446.4034 > > > > $residual > > [1] 0.5 > > > > $fn.reduction > > [1] 0 > > > > $feval > > [1] 828495 > > > > $iter > > [1] 50001 > > > > $convergence > > [1] 1 > > > > $message > > [1] "Maximum limit for iterations exceeded" > > > > I have tried maxiter=100000 but the output is the same. I know that ex > and ex2 are bringing the problems, but I am stuck with them. How can I make > it convergent? > > > > Thank you, > > > > Evgeniq > > > > > > > > >2008/4/25 Radka Pancheva <[EMAIL PROTECTED]>: > > >> I am trying to estimate the parameters of a bimodal normal > distribution using moments matching, so I have to solve a non-linear system > of equations. How can I solve the following simple example? > > >> > > >> x^2 - y^2 = 6 > > >> x – y = 3 > > >> > > >> I heard about nlsystemfit, but I don't know how to run it exactly. I > have tried the following code, but it doesn't really work: > > >> > > >> > > >> f1 <-y~ x[1]^2-x[2]^2-6 > > >> f2 <-z~ x[1]-x[2]-3 > > >> f <- list(f1=0,f2=0) > > >> nlsystemfit("OLS",f,startvals=c(0,0)) > > > > > >You could try the recent package BB by Ravi Varadhan. The code could > > >be the following: > > > > > >library(BB) > > > > > >f <- function(x) { > > > x1 <- x[1] > > > x2 <- x[2] > > > > > > F <- rep(NA, 2) > > > > > > F[1] <- x1^2 - x2^2 - 6 > > > F[2] <- x1 - x2 - 3 > > > > > > return(F) > > >} > > > > > >p0 <- c(1,2) > > >dfsane(par=p0, fn=f,control=list(maxit=3000)) > > > > > >I got the solution: > > > > > >x1 = 2.5 > > >x2 = -0.5 > > > > > >Paul > > > > > > > > > >______________________________________________ > > >R-help@r-project.org mailing list > > >https://stat.ethz.ch/mailman/listinfo/r-help > > >PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > >and provide commented, minimal, self-contained, reproducible code. > > > > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.