Hi, I am trying to fit a model with lmer in R and proc glimmix in SAS. I have simplified my code but I am surprised to see I get different results from the two softwares.
My R code is : lmer(y~age_cat + (1|cat),data=fic,family=binomial(link = "logit"), NaGQ=1) My SAS code is : ods output Glimmix.Glimmix.ParameterEstimates=t_estimates; proc glimmix data=tab_psi method=laplace; class age_cat cat; model psi (event='1') = age_cat / solution dist=B link=logit ; random intercept / subject=cat; run; >From R, I get the following fixed effects (Intercept) age_cat2. 76-85 ans age_cat3. 66-75 ans age_cat4. 41-65 ans -3.5766898 -0.0159466 -0.1919500 -0.4834741 age_cat5. 18-40 ans -1.2843977 But from SAS I get : Valeur Erreur Valeur Effet age_cat estimée type DDL du test t Pr > |t| Intercept -4.8608 0.2859 3 -17.00 0.0004 age_cat 1. >85-108 a 1.2841 0.2589 168E3 4.96 <.0001 age_cat 2. 76-85 ans 1.2681 0.2528 168E3 5.02 <.0001 age_cat 3. 66-75 ans 1.0921 0.2529 168E3 4.32 <.0001 age_cat 4. 41-65 ans 0.8006 0.2535 168E3 3.16 0.0016 age_cat 5. 18-40 ans 0 . . . . Even the intercept is different, but I can't find why. Has anyone an idea? Thanks in advance, Sophie [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.