We want to compute a pseudo R-squared for a model whose parameter estimation was based on maximum likelihood (function likfit, package geoR). I tried to compute the R2 proposed by Maddala (1983) which compare the maximized likelihood for the model without any predictor and the maximized likelihood for the model with all predictors. I got a really low value (0,01%). Did I miss something? Are there other R-squared which are more appropriate than the R2 of Maddala? :
>sp05_l01 <- likfit(cnm05g, *ini.cov.pars=vm05*, lik.method = "REML", trend = trend.spatial(~ logIKA04 + nbLitre0 + nbLitre1, cnm05g))#complete model >sp05_nt <- update(sp05_01, trend = trend.spatial("cte", cnm05g)) #null model >1-(sp07_nt$loglik/sp07_l0$loglik)^(2/590)#Maddala (1983) [1] 0.0001510074 Thanks, Regards, Marion -- Marion Jacquot Laboratoire de Chrono-environnement UMR UFC/CNRS 6249 USC INRA Université de Franche-Comté Place Leclerc F-25030 Besançon cedex FRANCE Tel. : +33 (0)381 665 829 Fax : +33 (0)381 665 797 http://chrono-environnement.univ-fcomte.fr/ [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.