Hallo together, I am trying to estimate parameters by means of QMLE using the nlminb optimizer for a tree-structured GARCH model. I face two problems. First, the optimizer returns error[8] false convergence if I estimate the functions below. I have estimated the model at first with nlm without any problems, but then I needed to add some constraints so i choose nlminb.
my.loglike.normal<-function(theta){ x.start<- 1/n * sum(returns) sigmasq.start<- 1/(n-1) * sum((returns-x.start)^2) data<-c(x.start,returns) my.sigmasq<- rep(0,n+1) my.sigmasq[1]<-sigmasq.start for (i in 2:(n+1)) { my.sigmasq[i]<-(theta[1] + theta[2]*data[i-1]^2 + theta[3]*my.sigmasq[i-1])*(data[i-1]<=d1)*(my.sigmasq[i-1]<=d2) + (theta[4] + theta[5]*data[i-1]^2 + theta[6]*my.sigmasq[i-1])*(my.sigmasq[i-1]>d2)*(data[i-1]<=d1)+ (theta[7] + theta[8]*data[i-1]^2 + theta[9]*my.sigmasq[i-1])*(data[i-1]>d1)*(my.sigmasq[i-1]<=d3)+(theta[10] + theta[11]*data[i-1]^2 + theta[12]*my.sigmasq[i-1])*(data[i-1]>d1)*(my.sigmasq[i-1]>d3) } my.mean<-rep(0,n+1) for(j in 2:(n+1)) { my.mean[j]<-theta[13]*data[j-1] } 1/2*sum(log(my.sigmasq[2:(n+1)])) + n/2*log(2*pi) + 1/2*sum((data[2:(n+1)]-my.mean[2:(n+1)])^2/(my.sigmasq[2:(n+1)])) } constLow=c(rep(0,(length(par.start)-1)),-2) my.optpar3<- nlminb(par.start,my.loglike.normal,lower=constLow,control=list(eval.max=500,iter.max=100) ) Second, I estimate a similar function but with only 7 instead of 13 parameters, I fix theta[1]-theta[6] to some constant, but vary d3 in a loop. It seems like that the optimizer faces some NA/Inf issues for some d3. for(j in (my.d1j+1):7){ cat(j,"\n") d3 <- emp.quant[j] constLo=c(rep(0.00001, (length(par.start)-1)), -999999) my.optpar3 <- nlminb(par.start, my.loglike.normal, lower=constLo, control=list(eval.max=60,iter.max=30)) value <- valore.normal(my.optpar3$par) } Thank you for your help! Best, Marcial -- View this message in context: http://r.789695.n4.nabble.com/Struggeling-with-nlminb-tp4648413.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.