Dear R users,
I have used the following function (in blue) aiming to find the linear 
regression between MOE and XLA and nesting my data by Species. I have obtained 
the following results (in green).
model4<-lme(MOE~XLA, random = ~ XLA|Species, method="ML")summary(model4)
Linear mixed-effects model fit by maximum likelihood Data: NULL         AIC     
BIC   logLik  -1.040187 8.78533 6.520094
Random effects: Formula: ~XLA | Species Structure: General positive-definite, 
Log-Cholesky parametrization            StdDev       Corr  (Intercept) 
1.944574e-01 (Intr)XLA         6.134158e-06 -0.884Residual    1.636428e-01      
 
Fixed effects: MOE ~ XLA                 Value  Std.Error DF   t-value 
p-value(Intercept) 3.0558697 0.15075939 32 20.269847  0.0000XLA         
0.0000005 0.00000335 32  0.150811  0.8811 Correlation:     (Intr)XLA -0.861
Standardized Within-Group Residuals:       Min         Q1        Med         Q3 
       Max -1.8354171 -0.4704322  0.1414749  0.5500273  1.5950338 
Number of Observations: 38Number of Groups: 5 
I have read that large correlation values such as,Correlation:     (Intr)XLA 
-0.861"reflect an ill-conditioned model", in addition XLA does not have an 
effect on the model p=0.88. These results are not logic when I look at my data 
and therefore I think I am missing something in the model? It would be very 
helpful if someone has some tips on this? In addition, I was wondering if 
somebody knows what is the best way to visualise this kind of data (nested 
data)?
Thank you very much for any help and time.


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to