Wow. Thank you greatly, that is amazing. Thiel statistic ==> (Pedantic comment: it is Theil (swap the i and e) Yes sir; I do that every time. Dyslexia perhaps?
Thanks again. Berend Hasselman wrote > On 21-10-2012, at 20:06, Brad Schneid wrote: > >> Hello, >> >> I am working on a simple non-parametric (Theil) regression function and >> and >> am following Hollander and Wolfe 1999 text. I would like some help >> making >> my function faster. I have compared with pre-packaged version from >> "MBLM", >> which isnt very fast either, but it appears mine is faster with N = 1000 >> (see results below). I plan on running this function repeatedly, and I >> generally have data lengths of ~ N = 6000 or more. >> >> # My function following Hollander and Wolfe text, Chapter 9 >> np.lm <-function(dat, X, Y, ...){ >> # Ch 9.2: Slope est. (X) for Thiel statistic >> combos <- combn(nrow(dat), 2) >> i.s <- combos[1,] >> j.s <- combos[2,] >> num <- vector("list", length=length(i.s)) >> dom <- vector("list", length=length(i.s)) >> >> for(i in 1:length(i.s)){ >> num[[i]] <- dat[j.s[i],Y] - dat[i.s[i],Y] >> dom[[i]] <- dat[j.s[i],X] - dat[i.s[i],X] >> } >> >> X <- median( sort( do.call(c, num) / do.call(c, dom) ) ) >> # Ch 9.4: Intercept est. for Thiel statistic >> Intercept <- median(dat[,"Y"] - X*dat[,"X"]) >> out <- data.frame(Intercept, X) >> return(out) >> } # usage: np.lm(dat, X=1, Y=2) >> ################################################################ >> >> library("mblm") # I will compare to mblm() function >> >> X <- rnorm(1000) >> Y <- rnorm(1000) >> dat <- data.frame(X, Y) >> >> system.time(np.lm(dat, X=1, Y=2) ) >> user system elapsed >> 118.610 0.130 119.144 >> 109.000 0.040 109.416 # ran it twice >> 86.190 0.100 86.589 # 3rd time > > Alternative function without your i loop (it isn't needed and can be > vectorized): > > np.lm.alt <-function(dat, X, Y, ...){ > # Ch 9.2: Slope est. (X) for Thiel statistic ==> (Pedantic comment: it > is > Theil (swap the i and e) > combos <- combn(nrow(dat), 2) > i.s <- combos[1,] > j.s <- combos[2,] > > Y.num <- dat[j.s,Y] - dat[i.s,Y] > X.dom <- dat[j.s,X] - dat[i.s,X] > X <- median( Y.num / X.dom) > # Ch 9.4: Intercept est. for Thiel statistic ==> (Pedantic comment: it > is > Theil (swap the i and e) > Intercept <- median(dat[,"Y"] - X*dat[,"X"]) > out <- data.frame(Intercept, X) > return(out) > } # usage: np.lm(dat, X=1, Y=2) > > > Try the compiler package on you original function: > > library(compiler) > np.lm.c <- cmpfun(np.lm) > > Test speed and correct results: > > X <- rnorm(500) > Y <- rnorm(500) > dat <- data.frame(X, Y) > > system.time(npout.c <- np.lm.c(dat, X=1, Y=2) ) > system.time(npout.1 <- np.lm(dat, X=1, Y=2) ) > system.time(npout.a <- np.lm.alt(dat, X=1, Y=2) ) > identical(npout.1,npout.c) > identical(npout.1,npout.a) > > Results: > >> system.time(npout.c <- np.lm.c(dat, X=1, Y=2) ) > user system elapsed > 21.442 0.066 21.517 >> system.time(npout.1 <- np.lm(dat, X=1, Y=2) ) > user system elapsed > 21.068 0.073 21.161 >> system.time(npout.a <- np.lm.alt(dat, X=1, Y=2) ) > user system elapsed > 0.303 0.010 0.313 >> identical(npout.1,npout.c) > [1] TRUE >> identical(npout.1,npout.a) > [1] TRUE > > You may try and test this with larger data lengths. > > > Berend > > ______________________________________________ > R-help@ > mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. -- View this message in context: http://r.789695.n4.nabble.com/help-speeding-up-simple-Theil-regression-function-tp4646923p4646933.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.