On 05-10-2012, at 07:12, Adam Zeilinger wrote:

> Hello R Help,
> 
> I am trying solve an MLE convergence problem: I would like to estimate four 
> parameters, p1, p2, mu1, mu2, which relate to the probabilities, P1, P2, P3, 
> of a multinomial (trinomial) distribution.  I am using the mle2() function 
> and feeding it a time series dataset composed of four columns: time point, 
> number of successes in category 1, number of successes in category 2, and 
> number of success in category 3.  The column headers are: t, n1, n2, and n3.
> 
> The mle2() function converges occasionally, and I need to improve the rate of 
> convergence when used in a stochastic simulation, with multiple 
> stochastically generated datasets.  When mle2() does not converge, it returns 
> an error: "Error in optim(par = c(2, 2, 0.001, 0.001), fn = function (p) : 
> L-BFGS-B needs finite values of 'fn'."  I am using the L-BFGS-B optimization 
> method with a lower box constraint of zero for all four parameters.  While I 
> do not know any theoretical upper limit(s) to the parameter values, I have 
> not seen any parameter estimates above 2 when using empirical data.  It seems 
> that when I start with certain 'true' parameter values, the rate of 
> convergence is quite high, whereas other "true" parameter values are very 
> difficult to estimate.  For example, the true parameter values p1 = 2, p2 = 
> 2, mu1 = 0.001, mu2 = 0.001 causes convergence problems, but the parameter 
> values p1 = 0.3, p2 = 0.3, mu1 = 0.08, mu2 = 0.08 lead to high convergence 
> rate.  I've chose!
 n these two sets of values because they represent the upper and lower 
estimates of parameter values derived from graphical methods.
> 
> First, do you have any suggestions on how to improve the rate of convergence 
> and avoid the "finite values of 'fn'" error?  Perhaps it has to do with the 
> true parameter values being so close to the boundary?  If so, any suggestions 
> on how to estimate parameter values that are near zero?
> 
> Here is reproducible and relevant code from my stochastic simulation:
> 
> ########################################################################
> library(bbmle)
> library(combinat)
> 
> # define multinomial distribution
> dmnom2 <- function(x,prob,log=FALSE) {
>  r <- lgamma(sum(x) + 1) + sum(x * log(prob) - lgamma(x + 1))
>  if (log) r else exp(r)
> }
> 
> # vector of time points
> tv <- 1:20
> 
> # Negative log likelihood function
> NLL.func <- function(p1, p2, mu1, mu2, y){
>  t <- y$tv
>  n1 <- y$n1
>  n2 <- y$n2
>  n3 <- y$n3
>  P1 <- (p1*((-1 + exp(sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2)))*t))*((-mu2)*(mu2 - p1 + p2) +
>    mu1*(mu2 + 2*p2)) - mu2*sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2))) -
>    exp(sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))*t)*
>    mu2*sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2))) +
>    2*exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2))))*t)*mu2*
>    sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))))/
>    exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2))))*t)/(2*(mu2*p1 + mu1*(mu2 + p2))*
>    sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2))))
>  P2 <- (p2*((-1 + exp(sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2)))*t))*(-mu1^2 + 2*mu2*p1 +
>    mu1*(mu2 - p1 + p2)) - mu1*sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2))) -
>    exp(sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))*t)*
>    mu1*sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2))) +
>    2*exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2))))*t)*mu1*
>    sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))))/
>    exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>    4*(mu2*p1 + mu1*(mu2 + p2))))*t)/(2*(mu2*p1 + mu1*(mu2 + p2))*
>    sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2))))
>  P3 <- 1 - P1 - P2
>  p.all <- c(P1, P2, P3)
>  -sum(dmnom2(c(n1, n2, n3), prob = p.all, log = TRUE))
> }
> 
> ## Generate simulated data
> # Model equations as expressions,
> P1 <- expression((p1*((-1 + exp(sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2)))*t))*((-mu2)*(mu2 - p1 + p2) +
>  mu1*(mu2 + 2*p2)) - mu2*sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2))) -
>  exp(sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))*t)*
>  mu2*sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2))) +
>  2*exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2))))*t)*mu2*
>  sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))))/
>  exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2))))*t)/(2*(mu2*p1 + mu1*(mu2 + p2))*
>  sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))))
> 
> P2 <- expression((p2*((-1 + exp(sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2)))*t))*(-mu1^2 + 2*mu2*p1 +
>  mu1*(mu2 - p1 + p2)) - mu1*sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2))) -
>  exp(sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))*t)*
>  mu1*sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2))) +
>  2*exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2))))*t)*mu1*
>  sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))))/
>  exp((1/2)*(mu1 + mu2 + p1 + p2 + sqrt((mu1 + mu2 + p1 + p2)^2 -
>  4*(mu2*p1 + mu1*(mu2 + p2))))*t)/(2*(mu2*p1 + mu1*(mu2 + p2))*
>  sqrt((mu1 + mu2 + p1 + p2)^2 - 4*(mu2*p1 + mu1*(mu2 + p2)))))
> 
> # True parameter values
> p1t = 2; p2t = 2; mu1t = 0.001; mu2t = 0.001
> 
> # Function to calculate probabilities from 'true' parameter values
> psim <- function(x){
>  params <- list(p1 = p1t, p2 = p2t, mu1 = mu1t, mu2 = mu2t, t = x)
>  eval.P1 <- eval(P1, params)
>  eval.P2 <- eval(P2, params)
>  P3 <- 1 - eval.P1 - eval.P2
>  c(x, matrix(c(eval.P1, eval.P2, P3), ncol = 3))
> }
> pdat <- sapply(tv, psim, simplify = TRUE)
> Pdat <- as.data.frame(t(pdat))
> names(Pdat) <- c("time", "P1", "P2", "P3")
> 
> # Generate simulated data set from probabilities
> n = rep(20, length(tv))
> p = as.matrix(Pdat[,2:4])
> y <- as.data.frame(rmultinomial(n,p))
> yt <- cbind(tv, y)
> names(yt) <- c("tv", "n1", "n2", "n3")
> 
> # mle2 call
> mle.fit <- mle2(NLL.func, data = list(y = yt),
>                start = list(p1 = p1t, p2 = p2t, mu1 = mu1t, mu2 = mu2t),
>                control = list(maxit = 5000, factr = 1e-10, lmm = 17),
>                method = "L-BFGS-B", skip.hessian = TRUE,
>                lower = list(p1 = 0, p2 = 0, mu1 = 0, mu2 = 0))
> 
> ###########################################################################
> 
> I interpret the error as having to do with the finite difference 
> approximation failing.  If so, perhaps a gradient function would help? If you 
> agree, I've described my unsuccessful attempt at writing a gradient function 
> below.  If a gradient function is unnecessary, ignore the remainder of this 
> message.
> 

After playing with your function, I can't agree with your interpretation of 
what could be wrong.
During optim iterations your function is dmnom2 is getting negative values for 
prob and that leads to the error messages.
I checked this by inserting the following lines in NLL.func after the 
assignment to p.all:

 cat("NLL.func p.all {P1,P2,P3}\n")
 print(matrix(p.all, ncol=3))

At some stage entries for P1, P2, P3 become negative (which ones and how many 
depends on the random number generator).
Try set.seed(1), set.seed(11) and set.seed(413) to see what happens.

The expressions are too complicated for further analysis.
Assuming your expressions are correct, you will need to restrict P1,P2,P3 to 
take on valid values.

Berend

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to