Thank you Rui! that works as I want it... :)
/Johannes On Fri, Sep 28, 2012 at 12:30 PM, Rui Barradas <ruipbarra...@sapo.pt> wrote: > Hello, > > Try the following. > > > f <- function(x, y, ..., > alternative = c("two.sided", "less", "greater"), exact = NULL){ > #w <- getOption("warn") > #options(warn = -1) # ignore warnings > p <- ks.test(x, y, ..., alternative = alternative, exact = > exact)$p.value > #options(warn = w) > p > } > > n <- 1e1 > dat <- data.frame(X=rnorm(n), Y=runif(n), Z=rchisq(n, df=3)) > > apply(dat, 2, function(x) apply(dat, 2, function(y) f(x, y))) > > Hope this helps, > > Rui Barradas > Em 28-09-2012 11:10, Johannes Radinger escreveu: >> >> Hi, >> >> I have a dataframe with multiple (appr. 20) columns containing >> vectors of different values (different distributions). >> Now I'd like to create a crosstable >> where I compare the distribution of each vector (df-column) with >> each other. For the comparison I want to use the ks.test(). >> The result should contain as row and column names the column names >> of the input dataframe and the cells should be populated with >> the p-value of the ks.test for each pairwise analysis. >> >> My data.frame looks like: >> df <- data.frame(X=rnorm(1000,2),Y=rnorm(1000,1),Z=rnorm(1000,2)) >> >> And the test for one single case is: >> ks <- ks.test(df$X,df$Z) >> >> where the p value is: >> ks[2] >> >> How can I create an automatized way of this pairwise analysis? >> Any suggestions? I guess that is a quite common analysis (probably with >> other tests). >> >> cheers, >> Johannes >> >> ______________________________________________ >> R-help@r-project.org mailing list >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. > > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.