Hi all, I'm getting contradictory results from bptest and ncvTest on a model calculated by GLS as:
olslm = lm(log(rr)~log(aloi)*reg*inv, data) varlm = lm(I(residuals(olslm)^2)~log(aloi)*reg*inv, data) glslm = lm(log(rr)~log(aloi)*reg*inv, data, weights=1/fitted(varlm)) Testing both olslm and glslm with both ncvTest and bptest gives: > ncvTest(olslm) Non-constant Variance Score Test Variance formula: ~ fitted.values Chisquare = 46.88206 Df = 1 p = 7.538963e-12 > ncvTest(glslm) Non-constant Variance Score Test Variance formula: ~ fitted.values Chisquare = 0.001466426 Df = 1 p = 0.9694533 > bptest(olslm) studentized Breusch-Pagan test data: olslm BP = 213.1477, df = 7, p-value < 2.2e-16 > bptest(glslm) studentized Breusch-Pagan test data: glslm BP = 213.1477, df = 7, p-value < 2.2e-16 Please notice the last output. It seems as if bptest is not considering the weights given to lm. What am I doing wrong here? Best regards -- Carlos ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.