Dear all,

I would like to add mixed effects in a multinomial model and I am trying to use MCMCglmm for that.

The main problem I face: my data set consits of a trapping data set, where the observation at eah trap (1 or 0 for each species) have been aggregated per traplines. Therefore we have a proportion of presence/absence for each species per trapline.

ex:
ID_line mesh habitat Apsy Mygl Crle Crru Miag Miar Mimi Mumu Misu Soar Somi 11 028S6A 28 copse 2 0 0 0 0 0 0 0 0 0 0 12 028S6B 28 copse 1 1 0 0 0 0 0 0 0 0 0 13 028S6C 28 hedge 2 0 0 4 0 0 0 0 0 0 0 14 028S6D 28 hedge 1 0 0 7 0 0 0 0 1 0 0 15 028S6E 28 hedge 7 0 0 1 0 0 0 0 0 0 0
 empty
11    28
12    28
13    24
14    21
15    22

When I run the following:

> test1 <- MCMCglmm(fixed=cbind(Apsy,Mygl,Crle,Crru,Miag,Miar,Mimi,Mumu,Misu,Soar,Somi,empty)~habitat,random=~mesh,family="multinomial12",data=metalSmA[,c(2,9,23:34)],rcov=~us(trait):units)

I got some error when running regarding the variance structure:

> "ill-conditioned G/R structure: use proper priors if you haven't or rescale data if you have"

I guess that the problem comes from the nature of my observation whih are frequencies rather than 0/1 per unit

Does someone know if a multinomial model fitted with MCMCglmm can handdle those frequencies table and how to specify the good G/R variance structures?


Regards

Amélie Vaniscotte

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to