Hello folks, I am on learning phase of R. I have developed Regression Model over six predictor variables. while development, i found my all data are not very linear. So, may because of this the prediction of my model is not exact.
Here is the summary of model : Call: lm(formula = y ~ x_1 + x_2 + x_3 + x_4 + x_5 + x_6) Residuals: Min 1Q Median 3Q Max -125.302 -26.210 0.702 26.261 111.511 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 48.62944 0.27999 173.684 < 2e-16 *** x_1 -0.67831 0.08053 -8.423 < 2e-16 *** x_2 0.07476 0.49578 0.151 0.880143 x_3 -0.22981 0.06489 -3.541 0.000399 *** x_4 0.01845 0.09070 0.203 0.838814 x_5 3.76952 0.67006 5.626 1.87e-08 *** x_6 0.07698 0.01565 4.919 8.75e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 33.76 on 19710 degrees of freedom Multiple R-squared: 0.006298, Adjusted R-squared: 0.005995 F-statistic: 20.82 on 6 and 19710 DF, p-value: < 2.2e-16 I have certain questions with this model 1. Any way to improve the accuracy of this model? 2.Which of the value is most useful among Residual standard error,degrees of freedom, Multiple R-squared, Adjusted R-squared, F-statisti, p-value for choosing best model from numbers of model ? 3.Is it appropriate to use polynomial model with these data? 4.In case when i am using polynomial model for regression, which degree is most appropriate for it? Thanks Vignesh
<<attachment: Rplot.png>>
<<attachment: Rplot01.png>>
<<attachment: Rplot02.png>>
<<attachment: Rplot03.png>>
<<attachment: Rplot04.png>>
<<attachment: Rplot05.png>>
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.