On Aug 2, 2012, at 3:23 PM, Abdul <abdul_fata...@yahoo.ca> wrote:
> Hi everybody > I need help to solve the following problem in finite element > A field variable f(x,y)=xᵌ y is defined over a rectangle domain > Ω={K: 0≤x≥4 , 0≤y≥6” Given the expression > g=∬_(0 0)^(6 4)▒〖X^3 Y dx dy〗 > And assume the following bilinear interpolation shape functions are used to > discretize the spatial geometric variable x and y: > N1= ¼ (1-z)(1-e) > N1= ¼ (1+z)(1-e) > N1= ¼ (1+z)(1+e) > N1= ¼ (1-z)(1+e) > > Where -1 ≤ z , e ≤ 1 for the local coordinates, z & e > Determine the value of g using Guass quadrature numerical integration > method. > Explain any similarity or difference between your answer and the exact > solution. > My apologies but there's a no homework policy on this list -- good luck! Michael > Please advise > > Thanks to all > > > > > > -- > View this message in context: > http://r.789695.n4.nabble.com/Need-Help-in-Finite-Element-Analysis-tp4638943.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.