Hi everyone! I am using the mle {stats4} to estimate the parameters of distributions by MLE method. I have a problem with the examples they provided with the mle{stats4} html files. Please check the example and my question below! *Here is the mle html help file * http://stat.ethz.ch/R-manual/R-devel/library/stats4/html/mle.html http://stat.ethz.ch/R-manual/R-devel/library/stats4/html/mle.html
*In the example provided with the help * > od <- options(digits = 5) > x <- 0:10 *#generating Poisson counts* > y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8) *#generating the > frequesncies* > ## Easy one-dimensional MLE: > nLL <- function(lambda) -sum(stats::dpois(y, lambda, log=TRUE)) *#they > define the Poisson negative loglikelihood* > fit0 <- mle(nLL, start = list(lambda = 5), nobs = NROW(y)) * #they > estimate the Poisson parameter using mle* > fit0 *#they call the output* Call: mle(minuslogl = nLL, start = list(lambda = 5), nobs = NROW(y)) Coefficients: lambda 11.545 * #this is their estimated Lambda Vallue.* *Now my question is in a Poisson distribution the Maximum Likelihood estimator of the mean parameter lambda is the sample mean, so if we calculate the sample mean of that generated Poisson distribution manually using R we get the below!* > sample.mean<- sum(x*y)/sum(y) > sample.mean [1] 3.5433 *This is the contradiction!! * Here I am getting the estimate as 3.5433(which is reasonable as most of the values are clustered around 3), but mle code gives the estimate 11.545(which may not be correct as this is out side the range 0:10) Why this contradiction? -- View this message in context: http://r.789695.n4.nabble.com/Maximum-Likelihood-Estimation-Poisson-distribution-mle-stats4-tp4635464.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.