Dear R users,
I am using lmer combined with AIC model selection and averaging (in the MuMIn package) to try and assess how isotope values (which indicate diet) vary within a population of animals. I have multiple measures from individuals (variable 'Tattoo') and multiple individuals within social groups within 4 locations (A, B, C ,D) crucially I am interested if there are differences between sexes and age classes (variable AGECAT2) and whether this differs with location. However, whether or not I get a significant sex:location interaction depends on which location is my reference level and I cannot understand why this is the case. It seems to be due to the fact that the standard error associated with my interactions varies depending on which level is the reference. Any help or advice would be appreciated, Andrew Robertson Below is the example code of what I am doing and an example of the model summary and model averaging results with location A as the ref level or location B. if A is the reference level... #full model Amodel<-lmer(d15N~(AGECAT2+Sex+Location1+AGECAT2:Location1+Sex:Location1+AGE CAT2:Sex+(1|Year)+(1|Location1/Socialgroup/Tattoo)), REML=FALSE, data=nocubs) #standardise model Amodels<-standardize(Amodel, standardize.y=FALSE) #dredge models summary(model.avg(get.models(Adredge,cumsum(weight)<0.95))) Then the average model coefficients indicate no sex by location interaction Component models: df logLik AICc Delta Weight 235 13 -765.33 1557.28 0.00 0.68 1235 15 -764.55 1559.91 2.63 0.18 3 9 -771.64 1561.57 4.29 0.08 12345 17 -763.67 1562.37 5.09 0.05 Term codes: AGECAT2 c.Sex Location1 AGECAT2:c.Sex c.Sex:Location1 1 2 3 4 5 Model-averaged coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 8.673592 0.474524 18.279 <2e-16 *** c.Sex 0.095375 0.452065 0.211 0.833 Location1B -3.972882 0.556575 7.138 <2e-16 *** Location1C -3.633331 0.531858 6.831 <2e-16 *** Location1D -3.348665 0.539143 6.211 <2e-16 *** c.Sex:Location1B -0.372653 0.513492 0.726 0.468 c.Sex:Location1C 0.428299 0.511254 0.838 0.402 c.Sex:Location1D -0.757582 0.512586 1.478 0.139 AGECAT2OLD -0.179772 0.150842 1.192 0.233 AGECAT2YEARLING -0.009596 0.132328 0.073 0.942 AGECAT2OLD:c.Sex 0.045963 0.296471 0.155 0.877 AGECAT2YEARLING:c.Sex -0.323985 0.268919 1.205 0.228 --- And the full model summary looks like this.. Linear mixed model fit by maximum likelihood Formula: d15N ~ (AGECAT2 + Sex + Location1 + AGECAT2:Location1 + Sex:Location1 + AGECAT2:Sex + (1 | Year) + (1 | Location1/Socialgroup/Tattoo)) Data: nocubs AIC BIC logLik deviance REMLdev 1568 1670 -761.1 1522 1534 Random effects: Groups Name Variance Std.Dev. Tattoo:(Socialgroup:Location1) (Intercept) 0.35500 0.59582 Socialgroup:Location1 (Intercept) 0.35620 0.59682 Location1 (Intercept) 0.00000 0.00000 Year (Intercept) 0.00000 0.00000 Residual 0.49584 0.70416 Number of obs: 608, groups: Tattoo:(Socialgroup:Location1), 132; Socialgroup:Location1, 22; Location1, 4; Year, 2 Fixed effects: Estimate Std. Error t value (Intercept) 8.83179 0.52961 16.676 AGECAT2OLD -0.44101 0.41081 -1.074 AGECAT2YEARLING 0.01805 0.38698 0.047 SexMale -0.11346 0.51239 -0.221 Location1B -3.97880 0.63063 -6.309 Location1C -4.04816 0.60404 -6.702 Location1D -3.36389 0.63304 -5.314 AGECAT2OLD:Location1B 0.44198 0.54751 0.807 AGECAT2YEARLING:Location1B -0.22134 0.52784 -0.419 AGECAT2OLD:Location1C 0.20684 0.50157 0.412 AGECAT2YEARLING:Location1C 0.24132 0.47770 0.505 AGECAT2OLD:Location1D 0.53653 0.52778 1.017 AGECAT2YEARLING:Location1D 0.51755 0.51038 1.014 SexMale:Location1B -0.02442 0.57546 -0.042 SexMale:Location1C 0.74680 0.58128 1.285 SexMale:Location1D -0.41800 0.59505 -0.702 AGECAT2OLD:SexMale -0.08907 0.32513 -0.274 AGECAT2YEARLING:SexMale -0.40146 0.30409 -1.320 If location B is the reference level then the average model coefficients indicate an age by sex interaction in location C. Component models: df logLik AICc Delta Weight 235 13 -765.33 1557.28 0.00 0.68 1235 15 -764.55 1559.91 2.63 0.18 3 9 -771.64 1561.57 4.29 0.08 12345 17 -763.67 1562.37 5.09 0.05 Term codes: AGECAT2 c.Sex Location2 AGECAT2:c.Sex c.Sex:Location2 1 2 3 4 5 Model-averaged coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 4.700710 0.294275 15.974 <2e-16 *** c.Sex -0.277278 0.248093 1.118 0.2637 Location2A 3.972882 0.556575 7.138 <2e-16 *** Location2C 0.339551 0.379873 0.894 0.3714 Location2D 0.624217 0.390063 1.600 0.1095 c.Sex:Location2A 0.372653 0.513492 0.726 0.4680 c.Sex:Location2C 0.800952 0.345898 2.316 0.0206 * c.Sex:Location2D -0.384929 0.346832 1.110 0.2671 AGECAT2OLD -0.179772 0.150842 1.192 0.2333 AGECAT2YEARLING -0.009596 0.132328 0.073 0.9422 AGECAT2OLD:c.Sex 0.045963 0.296471 0.155 0.8768 AGECAT2YEARLING:c.Sex -0.323985 0.268919 1.205 0.2283 And the full model summary looks like this.. --- Linear mixed model fit by maximum likelihood Formula: d15N ~ (AGECAT2 + Sex + Location2 + AGECAT2:Location2 + Sex:Location2 + AGECAT2:Sex + (1 | Year) + (1 | Location2/Socialgroup/Tattoo)) Data: nocubs AIC BIC logLik deviance REMLdev 1568 1670 -761.1 1522 1534 Random effects: Groups Name Variance Std.Dev. Tattoo:(Socialgroup:Location2) (Intercept) 0.35500 0.59582 Socialgroup:Location2 (Intercept) 0.35618 0.59681 Location2 (Intercept) 0.00000 0.00000 Year (Intercept) 0.00000 0.00000 Residual 0.49584 0.70416 Number of obs: 608, groups: Tattoo:(Socialgroup:Location2), 132; Socialgroup:Location2, 22; Location2, 4; Year, 2 Fixed effects: Estimate Std. Error t value (Intercept) 4.852982 0.342364 14.175 AGECAT2OLD 0.000986 0.361951 0.003 AGECAT2YEARLING -0.203275 0.358971 -0.566 SexMale -0.137881 0.261931 -0.526 Location2A 3.978806 0.630652 6.309 Location2C -0.069353 0.444658 -0.156 Location2D 0.614917 0.479262 1.283 AGECAT2OLD:Location2A -0.441995 0.547521 -0.807 AGECAT2YEARLING:Location2A 0.221330 0.527840 0.419 AGECAT2OLD:Location2C -0.235146 0.434839 -0.541 AGECAT2YEARLING:Location2C 0.462657 0.357815 1.293 AGECAT2OLD:Location2D 0.094536 0.442264 0.214 AGECAT2YEARLING:Location2D 0.738882 0.375638 1.967 SexMale:Location2A 0.024425 0.575468 0.042 SexMale:Location2C 0.771228 0.351708 2.193 SexMale:Location2D -0.393576 0.364486 -1.080 AGECAT2OLD:SexMale -0.089071 0.325140 -0.274 AGECAT2YEARLING:SexMale -0.401467 0.304098 -1.320 The results are also different if location C or D are the reference levels Andrew Robertson PhD student Centre for Ecology and Conservation University of Exeter, Cornwall Campus Tremough, Cornwall. TR10 9EZ UK Tel: 01326 371852 Email: <mailto:ar...@exeter.ac.uk> ar...@exeter.ac.uk Web page: <http://biosciences.exeter.ac.uk/staff/postgradresearch/andrewrobertson/> http://biosciences.exeter.ac.uk/staff/postgradresearch/andrewrobertson/ LinkedIn: <http://uk.linkedin.com/pub/andrew-robertson/39/91a/504> http://uk.linkedin.com/pub/andrew-robertson/39/91a/504 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.