Dear R users,

 

I am using lmer combined with AIC model selection and averaging (in the
MuMIn package) to try and assess how isotope values (which indicate diet)
vary within a population of animals.

 

I have multiple measures from individuals (variable 'Tattoo') and multiple
individuals within social groups within 4 locations (A, B, C ,D) crucially I
am interested if there are differences between sexes and age classes
(variable AGECAT2) and whether this differs with location.

However, whether or not I get a significant sex:location interaction depends
on which location is my reference level and I cannot understand why this is
the case. It seems to be due to the fact that the standard error associated
with my interactions varies depending on which level is the reference.

 

Any help or advice would be appreciated,

 

Andrew Robertson

 

Below is the example code of what I am doing and an example of the model
summary and model averaging results with location A as the ref level or
location B.

 

if A is the reference level...

 

#full model

Amodel<-lmer(d15N~(AGECAT2+Sex+Location1+AGECAT2:Location1+Sex:Location1+AGE
CAT2:Sex+(1|Year)+(1|Location1/Socialgroup/Tattoo)), REML=FALSE,
data=nocubs)

 

#standardise model

Amodels<-standardize(Amodel, standardize.y=FALSE)

 

#dredge models

summary(model.avg(get.models(Adredge,cumsum(weight)<0.95)))

 

Then the average model coefficients indicate no sex by location interaction

 
Component models:
      df  logLik    AICc Delta Weight
235   13 -765.33 1557.28  0.00   0.68
1235  15 -764.55 1559.91  2.63   0.18
3      9 -771.64 1561.57  4.29   0.08
12345 17 -763.67 1562.37  5.09   0.05
 
Term codes:
        AGECAT2           c.Sex       Location1   AGECAT2:c.Sex
c.Sex:Location1 
              1               2               3               4
5 
 
Model-averaged coefficients: 
                       Estimate Std. Error z value Pr(>|z|)    
(Intercept)            8.673592   0.474524  18.279   <2e-16 ***
c.Sex                  0.095375   0.452065   0.211    0.833    
Location1B            -3.972882   0.556575   7.138   <2e-16 ***
Location1C            -3.633331   0.531858   6.831   <2e-16 ***
Location1D            -3.348665   0.539143   6.211   <2e-16 ***
c.Sex:Location1B      -0.372653   0.513492   0.726    0.468    
c.Sex:Location1C       0.428299   0.511254   0.838    0.402    
c.Sex:Location1D      -0.757582   0.512586   1.478    0.139    
AGECAT2OLD            -0.179772   0.150842   1.192    0.233    
AGECAT2YEARLING       -0.009596   0.132328   0.073    0.942    
AGECAT2OLD:c.Sex       0.045963   0.296471   0.155    0.877    
AGECAT2YEARLING:c.Sex -0.323985   0.268919   1.205    0.228    
---
 

And the full model summary looks like this..

 

 

Linear mixed model fit by maximum likelihood 

Formula: d15N ~ (AGECAT2 + Sex + Location1 + AGECAT2:Location1 +
Sex:Location1 +      AGECAT2:Sex + (1 | Year) + (1 |
Location1/Socialgroup/Tattoo)) 

   Data: nocubs 

  AIC  BIC logLik deviance REMLdev

1568 1670 -761.1     1522    1534

Random effects:

Groups                         Name        Variance Std.Dev.

Tattoo:(Socialgroup:Location1) (Intercept) 0.35500  0.59582 

 Socialgroup:Location1          (Intercept) 0.35620  0.59682 

 Location1                      (Intercept) 0.00000  0.00000 

 Year                           (Intercept) 0.00000  0.00000 

 Residual                                   0.49584  0.70416 

Number of obs: 608, groups: Tattoo:(Socialgroup:Location1), 132;
Socialgroup:Location1, 22; Location1, 4; Year, 2

 

Fixed effects:

                           Estimate Std. Error t value

(Intercept)                 8.83179    0.52961  16.676

AGECAT2OLD                 -0.44101    0.41081  -1.074

AGECAT2YEARLING             0.01805    0.38698   0.047

SexMale                    -0.11346    0.51239  -0.221

Location1B                 -3.97880    0.63063  -6.309

Location1C                 -4.04816    0.60404  -6.702

Location1D                 -3.36389    0.63304  -5.314

AGECAT2OLD:Location1B       0.44198    0.54751   0.807

AGECAT2YEARLING:Location1B -0.22134    0.52784  -0.419

AGECAT2OLD:Location1C       0.20684    0.50157   0.412

AGECAT2YEARLING:Location1C  0.24132    0.47770   0.505

AGECAT2OLD:Location1D       0.53653    0.52778   1.017

AGECAT2YEARLING:Location1D  0.51755    0.51038   1.014

SexMale:Location1B         -0.02442    0.57546  -0.042

SexMale:Location1C          0.74680    0.58128   1.285

SexMale:Location1D         -0.41800    0.59505  -0.702

AGECAT2OLD:SexMale         -0.08907    0.32513  -0.274

AGECAT2YEARLING:SexMale    -0.40146    0.30409  -1.320

 

 

If location B is the reference level then the average model coefficients
indicate an age by sex interaction in location C.

 

Component models:
      df  logLik    AICc Delta Weight
235   13 -765.33 1557.28  0.00   0.68
1235  15 -764.55 1559.91  2.63   0.18
3      9 -771.64 1561.57  4.29   0.08
12345 17 -763.67 1562.37  5.09   0.05
 
Term codes:
        AGECAT2           c.Sex       Location2   AGECAT2:c.Sex
c.Sex:Location2 
              1               2               3               4
5 
 
Model-averaged coefficients: 
                       Estimate Std. Error z value Pr(>|z|)    
(Intercept)            4.700710   0.294275  15.974   <2e-16 ***
c.Sex                 -0.277278   0.248093   1.118   0.2637    
Location2A             3.972882   0.556575   7.138   <2e-16 ***
Location2C             0.339551   0.379873   0.894   0.3714    
Location2D             0.624217   0.390063   1.600   0.1095    
c.Sex:Location2A       0.372653   0.513492   0.726   0.4680    
c.Sex:Location2C       0.800952   0.345898   2.316   0.0206 *  
c.Sex:Location2D      -0.384929   0.346832   1.110   0.2671    
AGECAT2OLD            -0.179772   0.150842   1.192   0.2333    
AGECAT2YEARLING       -0.009596   0.132328   0.073   0.9422    
AGECAT2OLD:c.Sex       0.045963   0.296471   0.155   0.8768    
AGECAT2YEARLING:c.Sex -0.323985   0.268919   1.205   0.2283    
 
And the full model summary looks like this..
 
---

Linear mixed model fit by maximum likelihood 

Formula: d15N ~ (AGECAT2 + Sex + Location2 + AGECAT2:Location2 +
Sex:Location2 +      AGECAT2:Sex + (1 | Year) + (1 |
Location2/Socialgroup/Tattoo)) 

   Data: nocubs 

  AIC  BIC logLik deviance REMLdev

1568 1670 -761.1     1522    1534

Random effects:

Groups                         Name        Variance Std.Dev.

Tattoo:(Socialgroup:Location2) (Intercept) 0.35500  0.59582 

 Socialgroup:Location2          (Intercept) 0.35618  0.59681 

 Location2                      (Intercept) 0.00000  0.00000 

 Year                           (Intercept) 0.00000  0.00000 

 Residual                                   0.49584  0.70416 

Number of obs: 608, groups: Tattoo:(Socialgroup:Location2), 132;
Socialgroup:Location2, 22; Location2, 4; Year, 2

 

Fixed effects:

                            Estimate Std. Error t value

(Intercept)                 4.852982   0.342364  14.175

AGECAT2OLD                  0.000986   0.361951   0.003

AGECAT2YEARLING            -0.203275   0.358971  -0.566

SexMale                    -0.137881   0.261931  -0.526

Location2A                  3.978806   0.630652   6.309

Location2C                 -0.069353   0.444658  -0.156

Location2D                  0.614917   0.479262   1.283

AGECAT2OLD:Location2A      -0.441995   0.547521  -0.807

AGECAT2YEARLING:Location2A  0.221330   0.527840   0.419

AGECAT2OLD:Location2C      -0.235146   0.434839  -0.541

AGECAT2YEARLING:Location2C  0.462657   0.357815   1.293

AGECAT2OLD:Location2D       0.094536   0.442264   0.214

AGECAT2YEARLING:Location2D  0.738882   0.375638   1.967

SexMale:Location2A          0.024425   0.575468   0.042

SexMale:Location2C          0.771228   0.351708   2.193

SexMale:Location2D         -0.393576   0.364486  -1.080

AGECAT2OLD:SexMale         -0.089071   0.325140  -0.274

AGECAT2YEARLING:SexMale    -0.401467   0.304098  -1.320

 

The results are also different if location C or D are the reference levels

 

 

Andrew Robertson
PhD student
Centre for Ecology and Conservation
University of Exeter, Cornwall Campus
Tremough, Cornwall. TR10 9EZ
UK

Tel: 01326 371852
Email:  <mailto:ar...@exeter.ac.uk> ar...@exeter.ac.uk
Web page:
<http://biosciences.exeter.ac.uk/staff/postgradresearch/andrewrobertson/>
http://biosciences.exeter.ac.uk/staff/postgradresearch/andrewrobertson/

LinkedIn:  <http://uk.linkedin.com/pub/andrew-robertson/39/91a/504>
http://uk.linkedin.com/pub/andrew-robertson/39/91a/504

 

 


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to