... but this is tantalisingly close: dat1 <- with(data.catapult, data.frame( Distance, h=C(h, poly, 1), s=C(s, poly, 1), l=C(l, poly, 1), e=C(e, poly, 1), b=C(b, poly, 1) ) ) lm4 <- lm(Distance ~ .^2, data = dat1) summary(lm4)
... wish I knew what it meant. On Tue, Jun 26, 2012 at 12:18 AM, Simon Knapp <sleepingw...@gmail.com> wrote: > They are coding the variables as factors and using orthogonal > polynomial contrasts. This: > > data.catapult <- data.frame(data.catapult$Distance, > do.call(data.frame, lapply(data.catapult[-1], factor, ordered=T))) > contrasts(data.catapult$h) <- > contrasts(data.catapult$s) <- > contrasts(data.catapult$l) <- > contrasts(data.catapult$e) <- > contr.poly(3, contrasts=F) > contrasts(data.catapult$b) <- contr.poly(2, contrasts=F) > lm1 <- lm(Distance ~ .^2, data=data.catapult) > summary(lm1) > > gets you closer (same intercept at least), but I can't explain the > remaining differences. I'm not even sure why the results to look like > they do (interaction terms like "a*b" not "a:b" and one level for each > interaction). > > Hope that helps, > Simon Knapp ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.