Dear Helios,

I think you rather want a mixed model with shoe as random effect.

library(lme4)
lmer(Y ~ Ground + (1|Shoe)) #the effect of shoe is independent of the ground 
effect
or
lmer(Y ~ Ground + (0 + Ground|Shoe)) #the effect of shoe is different per 
ground.

Best regards,

Thierry

ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and 
Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium
+ 32 2 525 02 51
+ 32 54 43 61 85
thierry.onkel...@inbo.be
www.inbo.be

To call in the statistician after the experiment is done may be no more than 
asking him to perform a post-mortem examination: he may be able to say what the 
experiment died of.
~ Sir Ronald Aylmer Fisher

The plural of anecdote is not data.
~ Roger Brinner

The combination of some data and an aching desire for an answer does not ensure 
that a reasonable answer can be extracted from a given body of data.
~ John Tukey


-----Oorspronkelijk bericht-----
Van: r-help-boun...@r-project.org [mailto:r-help-boun...@r-project.org] Namens 
Helios de Rosario
Verzonden: dinsdag 12 juni 2012 13:35
Aan: r-help@r-project.org
Onderwerp: [R] Two-way linear model with interaction but without one main effect

Hi,

I know that the type of model described in the subject line violates the 
principle of marginality and it is rare in practice, but there may be some 
circumstances where it has sense. Let's take this imaginary example (not 
homework, just a silly made-up case for illustrating the rare situation):

I'm measuring the energy absorption of sports footwear in jumping. I have three 
models (S1, S2, S3), that are known by their having the same average value of 
this variable for different types of ground, but I want to model the energy 
absorption for specific ground types (grass, sand, and pavement).

To fit the model I take 90 independent measures (different shoes, different 
users for each observation), with 10 samples per footwear model and ground type.

# Example data:
shoe <- gl(3,30,labels=c("S1","S2","S3")) ground <- 
rep(gl(3,10,labels=c("grass","sand","pavement")),3)
Y <- rnorm(90,120,20)

My model may include a main effect of the ground type, and the interaction 
shoe:ground, but I think that in this peculiar case I could neglect the main 
effect of shoe, since my initial hypothesis is that the average energy 
absorption is the same for the three models.

My first thought was fitting the following model (with effect coding, so that 
the interaction coeffs have zero mean.):

mod1 <- lm(Y ~ ground + ground:shoe,
    contrasts=list(shoe="contr.sum",ground="contr.sum"))

But this model has the same number of coefficients as a full factorial, and 
actually represents the same model subspace, isn't it? In fact, the marginal 
means are not the same for the three types of shoes:

# Marginal means for my (random) example data
> tapply(predict(mod1),shoe,FUN=mean)
      S1       S2       S3
116.3581 121.0858 118.3800

If I'm not mistaken, to create the model that I want I can start with the full 
factorial model and remove the part associated to the main shoe
effect:

# Full model and its model matrix
mod1 <- lm(Y~shoe*ground,
    contrasts=list(shoe="contr.sum",ground="contr.sum"))
X <- model.matrix(mod1)
# Split X columns by terms
X1 <- X[,1]
X.shoe <- X[,2:3]
X.ground <- X[,4:5]
X.interact <- X[,6:9]
# New model without method main effect
mod2 <- lm(Y~X.ground+X.interact)

For this model the marginal means do coincide:
> tapply(predict(mod2),shoe,FUN=mean)
     S1      S2      S3
118.608 118.608 118.608

My questions are:
Is this correct? And is there an easier way of doing this?

Thanks
Helios De Rosario

--
Helios de Rosario Martínez

 Researcher


INSTITUTO DE BIOMECÁNICA DE VALENCIA
Universidad Politécnica de Valencia • Edificio 9C Camino de Vera s/n • 46022 
VALENCIA (ESPAÑA) Tel. +34 96 387 91 60 • Fax +34 96 387 91 69 www.ibv.org

  Antes de imprimir este e-mail piense bien si es necesario hacerlo.
En cumplimiento de la Ley Orgánica 15/1999 reguladora de la Protección de Datos 
de Carácter Personal, le informamos de que el presente mensaje contiene 
información confidencial, siendo para uso exclusivo del destinatario arriba 
indicado. En caso de no ser usted el destinatario del mismo le informamos que 
su recepción no le autoriza a su divulgación o reproducción por cualquier 
medio, debiendo destruirlo de inmediato, rogándole lo notifique al remitente.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
* * * * * * * * * * * * * D I S C L A I M E R * * * * * * * * * * * * *
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en 
binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is 
door een geldig ondertekend document.
The views expressed in this message and any annex are purely those of the 
writer and may not be regarded as stating an official position of INBO, as long 
as the message is not confirmed by a duly signed document.
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to