Hi, I appologise if this is a rudimentary question and long winded but I just wanted to let ye know where I'm comming from. I'm new to R and I'm trying to use the 'randomForest' package to classify and predict. The Error message that is troubling me is:
> pr<-predict(predictors,rf1, ext=ext) Error in x[...] <- m : NAs are not allowed in subscripted assignments In addition: Warning message: 'newdata' had 153595 rows but variable(s) found have 109 rows My steps are outlinded below which hopefully will give you insight into where I'm going horribly wrong. Step 1 I've sampled the environmental raster layers in ArcGIS giving me a csv file as follows. >Samples<-read.csv(("F:/R/Rst_points_10.csv"),head=TRUE,sep=",") >head (Samples) >attach(Samples) POINTID GRID_CODE X Y Slope Aspect Curvature Rugosity Plan_Curv Prof_Curv BS_BPI BS_BPI_S FS_BPI 1 1 74 420420.1 5572854 6.379370 116.5650 5 1.014847 2.80 -2.20 3 118 2 2 2 96 420460.1 5572834 5.051153 135.0000 0 1.007454 0.25 0.25 -1 -68 0 3 3 75 420510.1 5572834 0.000000 -1.0000 0 1.000000 0.00 0.00 -1 -68 0 4 4 76 420610.1 5572804 5.885129 194.0362 -4 1.012384 -2.00 2.00 3 118 0 5 5 97 429970.1 5572024 1.432096 270.0000 -3 1.004987 -2.00 1.00 -1 -68 0 6 6 98 429960.1 5571904 1.012750 315.0000 0 1.001247 0.00 0.00 0 -21 0 FS_BPI_S Bathy GROUP G1 G2 G3 G4 G5 G6 G7 G8 G9 1 441 -19 8 0 0 0 0 0 0 0 1 0 2 -27 -24 9 0 0 0 0 0 0 0 0 1 3 -27 -24 8 0 0 0 0 0 0 0 1 0 4 -27 -19 8 0 0 0 0 0 0 0 1 0 5 -27 -18 9 0 0 0 0 0 0 0 0 1 6 -27 -18 9 0 0 0 0 0 0 0 0 1 Step 2 I then uploaded the environemtal raster layers and stacked them. >files <-list.files(("C:/Users/GIS-Modeller/Documents/10m/ASCII"), pattern= 'asc', full.names=TRUE) >predictors <-stack(files) > predictors class : RasterStack dimensions : 1745, 3909, 6821205, 10 (nrow, ncol, ncell, nlayers) resolution : 10, 10 (x, y) extent : 417085.1, 456175.1, 5556329, 5573779 (xmin, xmax, ymin, ymax) coord. ref. : NA min values : NA -2.1e+09 -2.1e+09 -2.1e+09 -2.1e+09 -2.1e+09 -2.1e+09 NA NA NA max values : NA 2.1e+09 2.1e+09 2.1e+09 2.1e+09 2.1e+09 2.1e+09 NA NA NA Step 3 I then provided the projection. projection(predictors)<- "+proj=utm +zone=30 +ellps=WGS84 +datum=WGS84 +units=m +no_defs" Step 4 I've tried numerous ways to get rid of /relace the NA values. #na.action<- #predictors<-predictors[na.rm=FALSE] #99999->predictors[predictors==NA, ] #predictors<-predictors[predictors, na.action=na.omit ] #na.exclude->predictors=NA #na.omit(predictors) multiple combinations of these. (#99999->predictors[predictors==NA, ]) returned the expected max and min values for 'predictors' had the NA values not been taken into account (except for the fact that 99999 was neither a max or min value). > predictors class : RasterBrick dimensions : 1745, 3909, 6821205, 10 (nrow, ncol, ncell, nlayers) resolution : 10, 10 (x, y) extent : 417085.1, 456175.1, 5556329, 5573779 (xmin, xmax, ymin, ymax) coord. ref. : +proj=utm +zone=30 +ellps=WGS84 +datum=WGS84 +units=m +no_defs +towgs84=0,0,0 values : in memory min values : -1 -59 -10 -487 -26 -5 -1199 -14 -16 0 max values : 358 0 19 863 32 11 2551 16 14 34 Step 5 create the 'model'/rf. model<-factor(G1)~ Slope+Aspect+Curvature+Rugosity+ Plan_Curv+ Prof_Curv+ BS_BPI+ BS_BPI_S+ FS_BPI rf<- randomForest(model) > rf Call: randomForest(formula = model) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 3 OOB estimate of error rate: 8.26% Confusion matrix: 0 1 class.error 0 88 6 0.06382979 1 3 12 0.20000000 Step 6 Begin prediction >ext = extent(417085.1, 456175.1, 5556329, 5573779) pr<-predict(predictors,rf1, ext=ext) Error in x[...] <- m : NAs are not allowed in subscripted assignments In addition: Warning message: 'newdata' had 153595 rows but variable(s) found have 109 rows I thank those that have read this. All help is extreemly apprecieated. Cheers Fionn -- View this message in context: http://r.789695.n4.nabble.com/randomForest-Species-Distribution-Modelling-tp4632515.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.