Greetings again R users, Some of you will likely recognize me but I hope you can help me once more. I have tried the mixed model mailing list for this question but have yet to find a solution. As such I hope someone will have another idea.
I have previously attempted to replicate the UN, CS, and AR(1) covariance structures used in SAS PROC MIXED. However, my efforts have fallen short on replicating the Variance Components (VC) structure. I have read that it is also known as a diagonal structure. Below I have copied over all the models I have tried and their output with no success. Perhaps someone here will see my error or something I have overlooked. I have attached the data for this particular model. Thanks to all, I certainly cannot thank this help list enough. I you need any further information/clarification, please ask. Cheers, Charles dat=read.table("C:/subset.csv",sep=",",header=TRUE, na.strings=".") attach(dat) dat34=dat[Group %in% c("3", "4"),] attach(dat34) liver34=within(dat34, { Group=factor(Group) Event_name=factor(Event_name) Died=factor(Died) ID=factor(ID) }) attach(liver34) contrasts(liver34$Old_Event_name)=contr.sum(n=6) contrasts(liver34$Pig_group)=contr.sum(n=2) contrasts(liver34$Died)=contr.sum(n=2) ##What is should be from SAS #CV var #Type 3 Tests of Fixed Effects #Effect NumDF DenDF F Value Pr > F #Group 1 22 0.25 0.6244 #Died 1 22 6.55 0.0179 #Group*Died 1 22 4.43 0.0470 fit.1=lme(var~Group*Died, random=~1|ID, data=dat34) anova(fit.1, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 227.58700 <.0001 #Group 1 22 0.18320 0.6728 #Died 1 22 3.63388 0.0698 #Group:Died 1 22 3.04103 0.0951 fit.2=lme(var~Group*Died, data=dat34, random=~1|ID/Died) anova(fit.2, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 77.99004 <.0001 #Group 1 22 1.46275 0.2393 #Died 1 22 5.84535 0.0243 #Group:Died 1 22 3.04103 0.0951 fit.3=lme(var~Group*Died, random=list(ID=pdSymm(~Event_name)), data=dat34) anova(fit.3, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 273.10918 <.0001 #Group 1 22 0.69692 0.4128 #Died 1 22 1.43316 0.2440 #Group:Died 1 22 5.74399 0.0255 fit.4=lme(var~Group*Died, random=list(ID=pdSymm(~Group)), data=dat34) anova(fit.4, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 235.13889 <.0001 #Group 1 22 0.15878 0.6941 #Died 1 22 3.83253 0.0631 #Group:Died 1 22 3.01222 0.0966 fit.5=lme(var~Group*Died, random=list(ID=pdSymm(~Group)), data=dat34, weights=varIdent(form=~1|Event_name)) anova(fit.5, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 277.16705 <.0001 #Group 1 22 0.23901 0.6298 #Died 1 22 3.99283 0.0582 #Group:Died 1 22 3.23135 0.0860 fit.6=lme(var~Group*Died, random=list(ID=pdSymm(~Group)), data=dat34, weights=varIdent(form=~1|Event_name)) anova(fit.6, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 277.16705 <.0001 #Group 1 22 0.23901 0.6298 #Died 1 22 3.99283 0.0582 #Group:Died 1 22 3.23135 0.0860 fit.7=lme(var~(Group*Died), random=list(ID=pdCompSymm(~Died)), data=dat34) anova(fit.7, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 85.83799 <.0001 #Group 1 22 1.60624 0.2183 #Died 1 22 4.71795 0.0409 #Group:Died 1 22 2.65379 0.1175 fit.8=lme(var~(Group*Died), data=dat34, random=~1|ID, corr=corSymm()) anova(fit.8, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 119.54403 <.0001 #Group 1 22 4.58972 0.0435 #Died 1 22 8.01715 0.0097 #Group:Died 1 22 5.27470 0.0315 fit.9=lme(var~(Group*Died), data=dat34, random=list(ID=pdDiag(~Group*Died)), corr=corSymm(, ~1|ID)) # Error in lme.formula(var ~ (Group * Died), data = dat34, random = list(ID = pdDiag(~Group * : # nlminb problem, convergence error code = 1 # message = iteration limit reached without convergence (9) fit.10=lme(var~(Group*Died), data=dat34, random=list(ID=pdDiag(~Group*Died)), corr=NULL) anova(fit.10, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 93.90211 <.0001 #Group 1 22 1.75311 0.1991 #Died 1 22 6.84379 0.0158 #Group:Died 1 22 3.11458 0.0915 fit.11=lme(var~Group*Died, data=dat34, random=list(ID=pdDiag(~Group*Died))) anova(fit.11, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 93.90211 <.0001 #Group 1 22 1.75311 0.1991 #Died 1 22 6.84379 0.0158 #Group:Died 1 22 3.11458 0.0915 fit.12=lme(var~Group*Died, data=dat34, random=list(ID=pdDiag(~Event_name))) anova(fit.12, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 87.33040 <.0001 #Group 1 22 1.09661 0.3064 #Died 1 22 5.46329 0.0289 #Group:Died 1 22 2.94589 0.1001 summary(fit.12) fit.13=lme(var~Group*Died, data=dat34, random=list(ID=pdDiag(~Group))) anova(fit.13, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 77.99004 <.0001 #Group 1 22 1.46275 0.2393 #Died 1 22 5.84535 0.0243 #Group:Died 1 22 3.04103 0.0951 fit.14=lme(var~Group*Died, data=dat34, random=list(ID=pdDiag(~Died))) anova(fit.14, type="marginal", adjustSigma=F) # numDF denDF F-value p-value #(Intercept) 1 101 85.83800 <.0001 #Group 1 22 1.60624 0.2183 #Died 1 22 4.71795 0.0409 #Group:Died 1 22 2.65379 0.1175 fit.15=lme(var~Group*Died, data=dat34, random=~1|ID, corr=corCompSymm()) anova(fit.15, type="marginal", adjustSigma=F) #same as fit.13 fit.16=lme(var~Group*Died, data=dat34, random=~1|ID/Event_name) anova(fit.16, type="marginal", adjustSigma=F) #same as fit.13 #######################
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.