Paul, After looking at your objective function and the penalty, I realized that since the contribution of each term to the objective function decreases geometrically, the later terms contribute relatively less to the overall maximum. Hence the numerical estimation of those terms is much less precise compared to the dominant terms. This explains why the ratios of x[k]/x[k-1] is not close to b, for small values of b.
Now let us try a larger value of b, say, b=0.8. Here are the results from optim, with "BFGS". > k <- 10000 > b <- 0.8 > > f <- function(x, pen, k, b) { + n <- length(x) + r <- sum((b^(0:(n-1)))*log(x)) - pen*(sum(x)-k)^2 + return(r) + } > > gr <- function(x, pen, k, b) { + n <- length(x) + r <- (b^(0:(n-1)))*(1/x) - 2*pen*(sum(x)-k) + return(r) + } > > > nvar <- 10 > p0 <- runif(nvar, 0, 20) > sols <- optim(p0, f, gr, method="BFGS", control=list(fnscale=-1), k=k, b=b, pen=1) > sum(sols$par) [1] 10000 > sols$par[2:nvar] / sols$par[1:(nvar-1)] [1] 0.8038902 0.8021216 0.7974323 0.7999681 0.7983918 0.8006497 0.8013940 [8] 0.8044702 0.7879365 > > As you can see, things are much better! Hope this helps, Ravi. ---------------------------------------------------------------------------- ------- Ravi Varadhan, Ph.D. Assistant Professor, The Center on Aging and Health Division of Geriatric Medicine and Gerontology Johns Hopkins University Ph: (410) 502-2619 Fax: (410) 614-9625 Email: [EMAIL PROTECTED] Webpage: http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html ---------------------------------------------------------------------------- -------- -----Original Message----- From: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED] On Behalf Of Ravi Varadhan Sent: Wednesday, April 02, 2008 2:03 PM To: 'Paul Smith'; 'R-help' Subject: Re: [R] L-BFGS-B needs finite values of 'fn' Yes, that is very important. If you look at the ratios x[k]/x[k-1], they are very close to 0.3 for the first few components, and then they start slowly diverging (ratio becomes smaller than 0.3) from that. So, optim is indeed finding a correct solution to the problem that you "actually" posed. You could increase your penalty to get a solution that is closer to the analytical solution you are expecting. Ravi. ---------------------------------------------------------------------------- ------- Ravi Varadhan, Ph.D. Assistant Professor, The Center on Aging and Health Division of Geriatric Medicine and Gerontology Johns Hopkins University Ph: (410) 502-2619 Fax: (410) 614-9625 Email: [EMAIL PROTECTED] Webpage: http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html ---------------------------------------------------------------------------- -------- -----Original Message----- From: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED] On Behalf Of Paul Smith Sent: Wednesday, April 02, 2008 1:57 PM To: R-help Subject: Re: [R] L-BFGS-B needs finite values of 'fn' But let me add the following: the part - 2000000*(sum(x)-k)^2 of my function is a penalty. In truth, I want to maximize sum((b^(0:(n-1)))*log(x)) s.t. sum(x) = k. Paul On Wed, Apr 2, 2008 at 6:48 PM, Paul Smith <[EMAIL PROTECTED]> wrote: > Thanks, Ravi. The analytical solution, (x_1,x_2,...,x_10), should > satisfy this equality: > > x_t / x_(t-1) = 0.3. > > Unfortunately, the procedure that you suggest does not lead to a > solution that satisfies such an equality. > > Paul > > > > > > On Wed, Apr 2, 2008 at 5:12 PM, Ravi Varadhan <[EMAIL PROTECTED]> wrote: > > Paul, > > > > Have you tried using "BFGS" without bounds? > > > > sols <- optim(rep(20,nvar), f, gr, method="BFGS", control=list(fnscale=-1)) > > > > This converges to a solution, although I don't know if the converged > > solution is what you want. > > > > Ravi. > > > > ---------------------------------------------------------------------------- > > ------- > > > > Ravi Varadhan, Ph.D. > > > > Assistant Professor, The Center on Aging and Health > > > > Division of Geriatric Medicine and Gerontology > > > > Johns Hopkins University > > > > Ph: (410) 502-2619 > > > > Fax: (410) 614-9625 > > > > Email: [EMAIL PROTECTED] > > > > Webpage: http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html > > > > > > > > ---------------------------------------------------------------------------- > > -------- > > > > > > > > -----Original Message----- > > From: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED] On > > Behalf Of Paul Smith > > > > Sent: Monday, March 31, 2008 2:25 PM > > To: R-help > > > > > > Subject: Re: [R] L-BFGS-B needs finite values of 'fn' > > > > On Mon, Mar 31, 2008 at 2:57 PM, Zaihra T <[EMAIL PROTECTED]> wrote: > > > try something like this before wrapping up your function else i guess > > u'll > > > have to stick to Prof Brian Ripley suggestion his suggestions are usually > > > best bet . > > > > > > f <- function(x) { > > > > > > n <- length(x) > > > > > > r <- sum((b^(0:(n-1)))*log(x)) - 2000000*(sum(x)-k)^2 > > > if(!is.finite(r)) > > > > > > r<-1e+20 return(r) > > > > > > } > > > > > > have a nice day. > > > > > > > > > > > > > > > On Mon, 31 Mar 2008 12:24:09 +0100 "Paul Smith" wrote: > > > > Dear All, > > > > > > > > I am trying to solve the optimization problem below, but I am always > > > > getting the following error: > > > > > > > > Error in optim(rep(20, nvar), f, gr, method = "L-BFGS-B", lower = rep(0, > > : > > > > L-BFGS-B needs finite values of 'fn' > > > > > > > > Any ideas? > > > > > > > > Thanks in advance, > > > > > > > > Paul > > > > > > > > -----------------------------------------! ------ > > > > > > > > k <- 10000 > > > > b <- 0.3 > > > > > > > > f <- function(x) { > > > > > > > > n <- length(x) > > > > > > > > r <- sum((b^(0:(n-1)))*log(x)) - 2000000*(sum(x)-k)^2 > > > > > > > > return(r) > > > > > > > > } > > > > > > > > gr <- function(x) { > > > > > > > > n <- length(x) > > > > > > > > r <- (b^(0:(n-1)))*(1/x) - 4000000*(sum(x)-k) > > > > > > > > return(r) > > > > > > > > } > > > > > > > > nvar <- 10 > > > > (sols <- > > > > > > > > > optim(rep(20,nvar),f,gr,method="L-BFGS-B",lower=rep(0,nvar),upper=rep(k,nvar > > ),control=list(fnscale=-1,parscale=rep(2000,nvar),factr=1e-300,pgtol=1e-300) > > )) > > > > Not much progress, Zaihra. Unfortunately! I am wondering whether one > > can transform the original problem into an equivalent one and solvable > > with optim. > > > > I know the analytical solution; I am just trying to check how far can > > R go regarding optimization problems. > > > > Paul > > > > ______________________________________________ > > > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > > > > > > and provide commented, minimal, self-contained, reproducible code. > > > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.