I am running two mixed effects regressions. One (fitRandomIntercept) has a random intercept, the second (fitRandomInterceptSlope) has a random intercept and a random slope. In the random slope regression, the fixed effect for time is not significant. In the random intercept random slope model, the fixed effect for time is significant. Despite the difference in the results obtained from the two models. a comparison of the two models, performed via anova(fitRandomIntercept,fitRandomInterceptSlope), shows that there is no significant difference between the two models. I don't understand how this can happen, and I don't know which model I should report. The random intercept random slope model makes physiologic sense, but the principle of parsimony would suggest I report the random intercept model given that it is simpler than the random intercept random slope model, and there is no significant difference between the two models.
Can someone help me understand (1) why one model has a significant slope where as other does not, and (2) given the difference in the two models why the ANOVA comparison of the two model is not significant. Thanks, John Log and code follows: > # Define data. > line <- > c(1,2,6,11,12,16,17,18,19,21,22,23,24,25,26,31,32,33,34,35,36,41,42,43,46,47,48,49,51,52,56,57,61,66,67,71,72,73,77,82,87,92,97,107,112,117) > > subject<- > c(1,1,2,3,3,4,4,4,4,5,5,5,5,5,6,7,7,7,7,7,8,9,9,9,10,10,10,10,11,11,12,12,13,14,14,15,15,15,16,17,18,19,20,22,23,24) > > time <- > c(1,3,1,1,6,1,3,7,4,1,3,7,3,35,1,1,3,10,2,25,1,1,3,9,1,3,9,2,1,6,1,3,1,1,3,1,3,11,7,7,7,7,7,7,7,6) > > value <- > c(22,4,39,47,5,34,3,33,21,42,9,86,56,39,57,71,8,57,62,47,79,60,10,68,47,6,46,48,57,11,85,12,34,30,1,42,7,33,1,1,1,1,1,1,1,2) > > # Add data to dataframe. > repeatdatax <- data.frame(line=line,subject=subject,time=time,value=value) > # Print the data. > repeatdatax line subject time value 1 1 1 1 22 2 2 1 3 4 3 6 2 1 39 4 11 3 1 47 5 12 3 6 5 6 16 4 1 34 7 17 4 3 3 8 18 4 7 33 9 19 4 4 21 10 21 5 1 42 11 22 5 3 9 12 23 5 7 86 13 24 5 3 56 14 25 5 35 39 15 26 6 1 57 16 31 7 1 71 17 32 7 3 8 18 33 7 10 57 19 34 7 2 62 20 35 7 25 47 21 36 8 1 79 22 41 9 1 60 23 42 9 3 10 24 43 9 9 68 25 46 10 1 47 26 47 10 3 6 27 48 10 9 46 28 49 10 2 48 29 51 11 1 57 30 52 11 6 11 31 56 12 1 85 32 57 12 3 12 33 61 13 1 34 34 66 14 1 30 35 67 14 3 1 36 71 15 1 42 37 72 15 3 7 38 73 15 11 33 39 77 16 7 1 40 82 17 7 1 41 87 18 7 1 42 92 19 7 1 43 97 20 7 1 44 107 22 7 1 45 112 23 7 1 46 117 24 6 2 > > # Run random effects regression, with random intercept. > library(nlme) > > #random intercept > fitRandomIntercept <- lme(value~time,random=~1 > |subject,data=repeatdatax) > summary(fitRandomIntercept) Linear mixed-effects model fit by REML Data: repeatdatax AIC BIC logLik 432.7534 439.8902 -212.3767 Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 5.78855 25.97209 Fixed effects: value ~ time Value Std.Error DF t-value p-value (Intercept) 31.70262 5.158094 22 6.146189 0.0000 time -0.26246 0.632612 22 -0.414888 0.6822 Correlation: (Intr) time -0.611 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.0972719 -0.9923743 0.1216571 0.6734183 2.0290540 Number of Observations: 46 Number of Groups: 23 > > #random intercept and slope > fitRandomInterceptSlope <- > lme(value~time,random=~1+time|subject,data=repeatdatax) > summary(fitRandomInterceptSlope) Linear mixed-effects model fit by REML Data: repeatdatax AIC BIC logLik 434.7684 445.4735 -211.3842 Random effects: Formula: ~1 + time | subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 0.05423581 (Intr) time 2.05242164 -0.477 Residual 23.70228346 Fixed effects: value ~ time Value Std.Error DF t-value p-value (Intercept) 38.85068 5.205499 22 7.463392 0.0000 time -2.45621 1.081599 22 -2.270903 0.0333 Correlation: (Intr) time -0.648 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.30668304 -0.63797284 -0.09662859 0.69620396 2.05363165 Number of Observations: 46 Number of Groups: 23 > > # Compare random intercept model to random intercept and slope model. > anova(fitRandomIntercept,fitRandomInterceptSlope) Model df AIC BIC logLik Test L.Ratio fitRandomIntercept 1 4 432.7534 439.8902 -212.3767 fitRandomInterceptSlope 2 6 434.7684 445.4735 -211.3842 1 vs 2 1.985043 p-value fitRandomIntercept fitRandomInterceptSlope 0.3706 > My code : # Define data. line <- c(1,2,6,11,12,16,17,18,19,21,22,23,24,25,26,31,32,33,34,35,36,41,42,43,46,47,48,49,51,52,56,57,61,66,67,71,72,73,77,82,87,92,97,107,112,117) subject<- c(1,1,2,3,3,4,4,4,4,5,5,5,5,5,6,7,7,7,7,7,8,9,9,9,10,10,10,10,11,11,12,12,13,14,14,15,15,15,16,17,18,19,20,22,23,24) time <- c(1,3,1,1,6,1,3,7,4,1,3,7,3,35,1,1,3,10,2,25,1,1,3,9,1,3,9,2,1,6,1,3,1,1,3,1,3,11,7,7,7,7,7,7,7,6) value <- c(22,4,39,47,5,34,3,33,21,42,9,86,56,39,57,71,8,57,62,47,79,60,10,68,47,6,46,48,57,11,85,12,34,30,1,42,7,33,1,1,1,1,1,1,1,2) # Add data to dataframe. repeatdatax <- data.frame(line=line,subject=subject,time=time,value=value) # Print the data. repeatdatax # Run random effects regression, with random intercept. library(nlme) #random intercept fitRandomIntercept <- lme(value~time,random=~1 |subject,data=repeatdatax) summary(fitRandomIntercept) #random intercept and slope fitRandomInterceptSlope <- lme(value~time,random=~1+time|subject,data=repeatdatax) summary(fitRandomInterceptSlope) # Compare random intercept model to random intercept and slope model. anova(fitRandomIntercept,fitRandomInterceptSlope) John David Sorkin M.D., Ph.D. Chief, Biostatistics and Informatics University of Maryland School of Medicine Division of Gerontology Baltimore VA Medical Center 10 North Greene Street GRECC (BT/18/GR) Baltimore, MD 21201-1524 (Phone) 410-605-7119 (Fax) 410-605-7913 (Please call phone number above prior to faxing) Confidentiality Statement: This email message, including any attachments, is for th...{{dropped:6}} ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.